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Research on Fine Water Body Extraction From SAR
Images Based on Superpixel Segmentation
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Abstract—The water body extraction technology based on su-
perpixel segmentation in SAR images faces challenges such as
insufficient precision in extracting fine water boundaries under
speckle noise and complex scattering conditions. To address these
issues, this article proposes an enhanced fine water body extrac-
tion method based on superpixel segmentation for SAR images.
In the superpixel segmentation phase, a simple linear iterative
clustering (SLIC) superpixel segmentation algorithm based on
eight-direction convolution (referred to as EDC-SLIC algorithm)
is introduced. This algorithm constructs three pseudo-channels
using eight-direction convolution to replace the three color channels
of traditional color images and employs logarithmic difference
measurement in the color distance calculation part of the SLIC
algorithm, thereby adapting it to the segmentation requirements
of SAR images. In the water body information extraction phase,
a multifeature weighted Otsu water body information extraction
algorithm integrating superpixels (referred to as MFW-Otsu al-
gorithm) is proposed. This algorithm integrates local mean and
variance into a new feature image through weighting, enabling
more accurate representation of texture changes in the image and
enhancing the algorithm’s ability to process complex image struc-
tures. The experimental results demonstrate that the EDC-SLIC
algorithm and MFW-Otsu algorithm exhibit significant advantages
in accuracy, robustness, and practicality. Furthermore, the integra-
tion of superpixels effectively improves the algorithm’s adaptability
to complex scenes, enhances detail processing capabilities, reduces
misclassification phenomena, and improves the accuracy of water
body information extraction.

Index Terms—Otsu, simple linear iterative clustering (SLIC),
superpixel segmentation, synthetic aperture radar (SAR), water
body extraction.

I. INTRODUCTION

WATER is a fundamental natural resource essential for
the survival and development of human societies and

ecosystems. Rapid and accurate acquisition of water-body
information and its spatial distribution is critical for national
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resource management, urban planning, and disaster assessment
[1]. Synthetic aperture radar (SAR), an active remote-sensing
technology, offers all-weather, day-and-night imaging capabil-
ities that facilitate the detection of water bodies in shallow and
shadowed regions; however, the inherent speckle noise and com-
plex terrain-induced scattering in SAR imagery pose significant
challenges to precise and detailed water body extraction.

Early work on SAR based water body extraction employed
traditional image processing techniques such as grayscale his-
togram thresholding, region growing algorithms, and edge de-
tection [2], [3], [4], [5], [6], [7], [8]. These methods estab-
lished the foundation for SAR derived water identification but
struggled with complex terrain, multiscattering effects, shadow
discrimination, and sensitivity to speckle noise. With the rise
of machine learning and advanced image processing methods,
statistical models and support vector machines [9], [10], [11],
[12], [13] as well as convolutional neural networks [14], [15],
[16], [17], [18], [19] have been applied for automated water
body classification. Recent years have witnessed considerable
advances in superpixel segmentation for SAR imagery, driven
by the development of advanced algorithms (such as SOTA)
[20], [21], [22], [23], [24]. These methods have substantially
enhanced the homogeneity and boundary adherence of superpix-
els in challenging polarimetric and complex SAR environments.
Although these approaches improve detection accuracy, they
remain hampered by substantial computational requirements
and a heavy dependence on extensive labeled training datasets.

As the resolution of remote sensing images increases, tradi-
tional pixel-level processing methods struggle to meet precision
requirements for fine water extraction in most complex scenes,
though they remain effective for some simple or special scenes.
Consequently, superpixel based approaches have attracted sig-
nificant interest. Superpixel segmentation reduces data volume
while preserving spatial structural information, thereby provid-
ing effective support for subsequent image classification and
target extraction. Research into superpixel based fine water
extraction methods for SAR images not only enhances extraction
accuracy and robustness but also enables applications in dy-
namic water monitoring, environmental protection, and disaster
mitigation.

Chen et al. [25] proposed a deep learning framework that
integrates superpixel segmentation to extract urban water bodies
from high-resolution remote sensing images. This framework
isolates water features in complex urban scenes and achieves an
overall accuracy (OA) of 99.14%. Pappas et al. [26] developed
a river extraction pipeline for SAR imagery based on superpixel
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segmentation and postclassification, enabling automated identi-
fication and planar modeling of river networks. Xiaopeng et al.
[27] introduced a multisource data fusion model (MDFM) and
a superpixel water extraction model (SWEM) for all weather
water-body detection at the superpixel scale, which improves
spatiotemporal resolution. Haoming et al. [28] presented a sur-
face water extraction method that combines superpixels with
a graph convolutional network; their results demonstrate high
accuracy and strong boundary adherence even with limited
training samples. Zhao et al. [29] proposed the superpixel based
Detransformer (SPT) architecture, which leverages adaptive su-
perpixel features and adjacency matrix knowledge constraints.
Their SPT UNet achieves performance competitive with other
state-of-the-art extraction models in both quantitative metrics
and visual delineation. Li et al. [30] proposed a multiscale adap-
tive superpixel generation method for PolSAR images based
on simple linear iterative clustering (SLIC). The results demon-
strate that the proposed method provides richer multiscale detail
information and significantly improves segmentation outcomes.

However, these methods are tailored to specific scenarios and
do not generalize well to SAR-based water body extraction.
Moreover, many of them incur long computation times and
high resource demands, especially for high-resolution images
or multi-iteration workflows. In contrast, the proposed method,
building upon superpixel segmentation and enhanced traditional
algorithms, offers a computationally efficient alternative that
requires minimal training data. This approach specifically ad-
dresses SAR challenges such as speckle noise and complex
scattering by introducing novel adaptations:

1) constructing pseudo-channels via eight-direction convo-
lution to enrich single-channel SAR data representation;

2) incorporating logarithmic difference and edge weighting
in the superpixel distance metric for improved robustness
to intensity variations and boundary adherence; and

3) integrating local mean and variance features into a
weighted Otsu thresholding framework to enhance texture
awareness and noise suppression.

These modifications aim to bridge the gap between traditional
pixel-level methods and the representational power needed for
fine water body extraction in complex SAR scenes, without the
heavy resource demands of deep learning models.

II. FUNDAMENTALS OF SUPERPIXEL SEGMENTATION AND

WATER INFORMATION EXTRACTION

The SLIC algorithm offers several benefits, including a low
number of iterations, compact superpixel shapes, and high
boundary adherence. Consequently, we introduce the EDC-
SLIC superpixel segmentation algorithm, which is tailored for
SAR imagery. First, three pseudo-channels are generated via
eight-direction convolution to emulate the three color channels
of optical images. Then, the color-distance computation within
the original SLIC framework is optimized to better accommo-
date the scattering characteristics of SAR data. In water-body
extraction, the Otsu thresholding method is favored for its au-
tomation, statistical optimality, and computational efficiency. To
address the complex speckle noise and heterogeneous texture

of SAR images, we propose an MFW-Otsu algorithm. This
approach incorporates additional feature weights into the thresh-
olding process, thereby improving robustness and accuracy in
challenging SAR scenarios.

A. SLIC Superpixel Segmentation Algorithm

The SLIC algorithm adapts the K-means clustering paradigm
[31] to partition an image into uniform and structurally coherent
superpixel regions. A superpixel is defined as a spatially con-
nected group of pixels sharing similar attributes, such as intensity
and texture. By jointly optimizing feature distances in both
color (or intensity) and spatial domains, SLIC delivers accurate
segmentation results with high computational efficiency.

The SLIC algorithm begins by determining the target su-
perpixel size from the user-specified number of superpixels
and then places clustering centers on a regular hexagonal grid
across the image. A hexagonal grid achieves a more uniform
spatial covering than a square grid. Each cluster center marks
the initial centroid of a superpixel, with all superpixels initially
having approximately equal size. This initialization ensures that
subsequent clustering proceeds from a spatially balanced config-
uration and preserves superpixel uniformity [32]. The expected
superpixel size S is given by

S =
√

N/k. (1)

Here,N is the total number of pixels in the image,k is the desired
number of superpixels, andS represents the average area of each
superpixel (i.e., the side length of each superpixel).

Second, SLIC employs a composite distance metric to quan-
tify the similarity between each pixel and a given cluster center.
This metric balances color similarity against spatial proximity,
producing superpixels that are both spectrally homogeneous
and spatially compact. The formula for comprehensive distance
measurement D is

D(Pi, Ck) =

√
(d2c + ((d2s)/S)

2 ·m2). (2)

Here, the color distance dc refers to the color distance, indicating
the difference between pixels Pi and cluster centers Ck in the
Lab color space

dc =

√
(Li − Lk)

2 + (ai − ak)
2 + (bi − bk)

2. (3)

In (2), ds is the spatial distance, representing the distance
between the pixel Pi and the cluster center Ck in the image
coordinates:

ds =

√
(xi − xk)

2 + (yi − yk)
2. (4)

Here, D(Pi, Ck) denotes the composite distance between the
pixel Pi and the cluster center Ck. S is the expected superpixel
size (the square root of the average superpixel area), which
normalizes the spatial distance. The parameter m balances color
similarity against spatial compactness and typically ranges from
10 to 40. Higher values of m encourage more regular, compact
superpixel shapes, whereas lower values place greater emphasis
on preserving color homogeneity.
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Unlike standard K-means algorithm, SLIC algorithm confines
pixel assignment to a local neighborhood around each cluster
center. For each cluster center Ck, only pixels within a 2S × 2S
window are considered, rather than evaluating the entire im-
age. Within this window, the composite distance D(Pi, Ck) is
computed for each pixel Pi. If a pixel’s distance to center Ck

is smaller than its current assignment, its label is updated to
Ck. After all pixels have been evaluated, each cluster center is
repositioned by averaging the Lab color coordinates and spatial
coordinates of the pixels assigned to it

Ck = (1/Nk)

Nk∑
i=1

Pi. (5)

Here, Nk denotes the number of pixels assigned to the kth
cluster, and Pi is the color and position vector of these pixels.
The algorithm iteratively updates both the cluster centroids and
pixel labels, thereby refining the superpixel segmentation with
each iteration.

After clustering converges, SLIC applies morphological op-
erations to enforce connectivity of the superpixel regions. In
practice, image noise or complex structures can produce small,
isolated pixel groups. To eliminate these artifacts, SLIC merges
any disconnected pixel clusters into neighboring superpixels,
ensuring that each superpixel forms a single connected compo-
nent. This post-processing step suppresses spurious segments
and further smooths superpixel boundaries, thereby enhancing
the spatial coherence of the segmentation results.

B. Otsu Thresholding Method

The Otsu algorithm [33] is a widely used adaptive thresh-
olding method for image segmentation, especially effective in
the binarization of grayscale images. Its primary objective is to
automatically determine an optimal threshold based on the im-
age’s grayscale histogram, thereby separating the image into two
classes: foreground and background. This method is particularly
suitable for images with a bimodal grayscale distribution, where
the foreground and background exhibit distinct intensity differ-
ences. The core principle of the Otsu algorithm is to exhaustively
search for the threshold that maximizes the between-class vari-
ance (or equivalently, minimizes the within-class variance). In
this way, it ensures the best possible separation between the
two classes. This approach is also known as the maximum
between-class variance method. One of the key strengths of
the Otsu algorithm is its automation. It requires no manual
intervention or prior knowledge about the image content, making
it highly adaptable to various imaging scenarios.

For a grayscale image, the grayscale value of pixels is usually
between 0 and 255. Suppose the gray value range of the image
is [0, L− 1], where L is the gray level (usually 256). The Otsu
algorithm first calculates the gray histogram of the image, that
is, counts the number of pixels for each gray value, denoted as
h(i), where i is the gray value, h(i) represents the number of
pixels corresponding to that gray value. Based on the histogram,
calculate the probability distribution of each gray value:

p (i) = h (i) /N. (6)

Here, N represents the total number of pixels in the image, p(i)
indicates the proportion of pixels with a gray value i of in the
image.

Then, the Otsu algorithm divides the image into two cate-
gories, the target and the background, by traversing all possible
gray thresholds t. For each possible threshold t, the algorithm
can calculate the pixel ratio (i.e., weight) of the target and the
background, as well as their gray-level mean values. The weight
of the target class (i.e., the proportion of the total number of
pixels) can be expressed as

ω1 (t) =
L−1∑
i=t

p (i) . (7)

Its gray mean value can be expressed as

μ1 (t) =

(
L−1∑
i=t

i · p (i)
)
/ω1 (t) . (8)

The weights of the background class can be expressed as

ω2 (t) =

t−1∑
i=0

p (i) . (9)

Its gray mean value can be expressed as

μ2 (t) =

(
t−1∑
i=0

i · p (i)
)
/ω2 (t) . (10)

The core idea of the Otsu algorithm is to determine the optimal
segmentation threshold t by maximizing the interclass variance,
which quantifies the separability between the target and back-
ground classes. A larger interclass variance indicates a clearer
distinction between the two classes, leading to a more effective
segmentation result. The formula for inter-class variance is

σ2
B (t) = ω1 (t) · ω2 (t) · [μ1 (t)− μ2 (t)]

2. (11)

The Otsu algorithm traverses each possible threshold t, cal-
culates its corresponding interclass variance σ2

B(t), and then
selects the threshold t∗ that maximizes the interclass variance as
the optimal segmentation threshold

t∗ = argmax
t

σ2
B (t) . (12)

This threshold t∗ is the one that maximizes the difference
between the target and the background classes. Once the opti-
mal threshold t∗ is determined, binarization operation can be
performed on the image. That is, pixels with a gray value less
than t∗ are marked as the background, and pixels with a gray
value greater than t∗ or equal to t∗ are marked as the target. The
binarized image can be represented as

B (x, y) =

{
1, ifI (x, y) < t∗

0, otherwise
. (13)

Among them, B(x, y) is the binarized image of the output
and I(x, y) is the grayscale image of the input.

C. Postprocessing Techniques

To further enhance the accuracy of water body extraction, this
paper applies several post-processing techniques to the binarized
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images, including morphological operations such as opening and
closing, as well as Gaussian filtering for edge smoothing. These
operations are crucial for refining object boundaries and improv-
ing segmentation quality. Morphological opening is primarily
used to remove small isolated noise and to disconnect narrow
bridges between regions. It consists of an erosion operation
followed by a dilation operation. This process helps eliminate
irrelevant details without significantly affecting the shape of
the main water regions. Morphological closing, on the other
hand, is used to fill small holes within segmented regions and
to connect fragmented parts of water bodies. It is the reverse of
opening and involves a dilation operation followed by erosion.
This operation enhances the continuity of segmented objects
and reduces fragmentation. In addition, Gaussian filtering is
employed to smooth the edges of the extracted water regions.
By reducing sharp transitions and noise along the boundaries, it
helps produce cleaner and more visually consistent segmentation
results.

The basic principle of the erosion operation is to slide a
structuring element (SE) across the image and apply a local
minimum operation within the neighborhood defined by the SE.
At each pixel location, the SE is overlaid on the image, and the
minimum pixel value covered by the SE is assigned to the central
pixel. This process effectively shrinks bright regions (typically
foreground objects), removes small white noise, and thins object
boundaries. In contrast, the dilation operation performs the
opposite function. It uses the same sliding SE approach but
applies a local maximum operation instead. For each position,
the maximum pixel value within the neighborhood defined by
the SE is assigned to the central pixel. Dilation expands the
bright areas in the image, helping to fill small holes within
objects, connect adjacent regions, and thicken object boundaries.
Together, erosion and dilation serve as the building blocks
for more advanced morphological operations like opening and
closing, and play a critical role in noise removal and structure
refinement in binary image processing.

Gaussian filtering is a widely used smoothing technique in
image processing, primarily aimed at reducing noise and fine
details while preserving the overall structure of the image.
Unlike simple mean filtering, which assigns equal weight to
all neighboring pixels, Gaussian filtering applies a weighted
average based on a Gaussian distribution, giving more impor-
tance to pixels closer to the center of the filter window. The
weight of each pixel in the filtering process is determined by the
two-dimensional Gaussian function, defined as

G (x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
. (14)

Here, (x, y) is the coordinate of the pixel, σ is the standard
deviation of the Gaussian distribution, and determines the degree
of smoothness. Larger σ values will lead to a stronger smoothing
effect.

Gaussian filtering is achieved by convolving the Gaussian
kernel with the image. Specifically, Gaussian filtering first builds
a Gaussian kernel of (2k + 1)× (2k + 1) size based on the
specified σ values, where k usually takes 3σ. Then, slide the
Gaussian kernel on the image. For each pixel position, calculate

the weighted sum of its neighborhood pixel value and the corre-
sponding element of the Gaussian kernel, and assign the result
to that position. Its formula is

I ′ (x, y) =
k∑

i=−k

k∑
j=−k

I (x+ i, y + j) ·G (i, j) . (15)

Here, I(x, y) is the original image, I ′(x, y) is the filtered image,
and G(i, j) is the value of the Gaussian kernel at the position
(i, j).

Gaussian filtering is highly effective in smoothing images and
suppressing noise while preserving important structural details.
Compared to simple average filtering, its main advantage lies
in the use of a Gaussian-weighted kernel, which assigns greater
importance to pixels closer to the center of the filter. This allows
it to reduce noise without significantly blurring edges or distort-
ing object boundaries. This characteristic is particularly valuable
for tasks such as water body extraction, where maintaining edge
clarity is essential for accurate delineation.

III. PROPOSED WATER BODY INFORMATION EXTRACTION

METHOD BASED ON SUPERPIXEL SEGMENTATION

This article presents a water body extraction method for SAR
images based on superpixel segmentation, which is structured
into five core stages: SAR image preprocessing, EDC-SLIC
superpixel segmentation, water body extraction using the MFW-
Otsu algorithm, postprocessing, and accuracy evaluation and
analysis. Each stage is designed to build upon the previous one,
ensuring a progressive and integrated workflow that culminates
in the accurate extraction of water body information. The overall
methodological framework is illustrated in Fig. 1.

A. EDC-SLIC Superpixel Segmentation Algorithm

The core framework of the EDC-SLIC algorithm follows the
same foundational structure as the original SLIC algorithm,
as described in (1)–(5). In this approach, each image pixel is
represented by a five-dimensional feature vector that integrates
both color and spatial information. The algorithm then performs
an iterative optimization process similar to K-means clustering
within this five-dimensional feature space. During each iteration,
the clustering centers are updated by minimizing the weighted
sum of color and spatial distances. This strategy ensures that pix-
els with similar visual and positional characteristics are grouped
together. As the iterations proceed, the algorithm progressively
refines the segmentation, ultimately producing compact, spa-
tially coherent, and perceptually meaningful superpixel regions.

However, in SAR images, relying solely on conventional color
distance calculations is insufficient to capture the true similarity
between pixels, due to the presence of speckle noise and lim-
ited spectral information. To address this limitation, this article
introduces an improvement to the color distance calculation
component, as defined in (3). Specifically, a logarithmic differ-
ence measure is adopted to enhance contrast and better reflect
subtle variations in pixel intensity. This modification strengthens
the algorithm’s ability to distinguish between water bodies and
complex background features in SAR imagery, leading to more
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Fig. 1. Overall technical flowchart.

accurate and robust segmentation results:

dc =

3∑
n=1

30 · log
(
In + 1e− 10

Cn + 1e− 10

)
+ log

(
Cn + 1e− 10

In + 1e− 10

)
(16)

where In represent the intensity values of pseudo-channel n, and
Cn is a small constant added to prevent numerical instability
when intensities are close to zero.

This logarithmic transformation enhances the robustness of
color distance calculations, particularly in scenarios involving
significant intensity variations, making it well-suited for pro-
cessing SAR images. In addition, to more effectively capture
edge information within SAR images, the algorithm incorpo-
rates edge intensity into the distance computation. Specifically,
an edge intensity subgraph is introduced, derived from the results
of Canny edge detection. Canny edge detection is adopted due
to its effective edge localization and noise robustness, critical
for preserving fine water-land boundaries in speckle-prone SAR
images. This edge-aware enhancement allows the algorithm
to assign greater importance to pixels located near significant
boundaries

D = D +We · de. (17)

Here, We is the weight of the edge strength, which de is the
strength value calculated through edge detection.
We= 10 is empirically set to balance edge adherence and

region homogeneity. This value scales edge intensity to match
the magnitude of color distance. It is independent of Canny
thresholds, which are fixed at default values.

Fig. 2. Eight-direction convolutional template.

This improvement ensures that edge features are fully inte-
grated into the distance measurement process, significantly en-
hancing the quality of superpixel segmentation. By emphasizing
edge information, the algorithm better preserves boundary de-
tails, leading to more precise and coherent segmentation results,
especially in areas with complex textures or subtle transitions.
This refinement ultimately contributes to improved accuracy in
subsequent water body extraction from SAR images.

B. Pseudo-Channel Construction

To compensate for the limited information inherent in single-
channel SAR images, this article constructs three pseudo-
channels based on feature extraction and processing techniques
tailored to SAR data. These pseudo-channels provide richer
and more discriminative feature representations, which support
more effective superpixel segmentation. Specifically, these three
pseudo-channels extract the key information of the image from
three dimensions: local texture, statistical features and global
gradient respectively. By fusing these multidimensional fea-
tures, the proposed approach enhances the superpixel segmenta-
tion algorithm’s adaptability to complex SAR scenes, improving
its ability to distinguish between different land covers and water
bodies.

Pseudo-channel 1 captures local features and edge informa-
tion in the SAR image by applying convolution kernels oriented
in multiple directions, as illustrated in Fig. 2. This approach is
effective for detecting texture variations, particularly in complex
scenes, such as the boundaries between water bodies and land,
enabling clear differentiation of edge features among various
ground objects. Specifically, suppose there are K convolution
kernels Ki, and the construction of pseudo-channel 1 can be
expressed as

I1 (x, y) = max (conv2 (I,Ki)) , i ∈ {1, 2, . . . ,K} . (18)

Here, I is the input SAR image; conv2(I,Ki) indicates that the
image I is a convolution operation with the convolution kernel
Ki, and pseudo-channel 1 is constructed by taking the maximum
response value in each direction. This step effectively enhances
edge and texture features within the image, particularly in re-
gions exhibiting significant multidirectional texture variations,
such as the boundaries of water bodies. By emphasizing these
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directional responses, the method improves the distinction be-
tween adjacent surfaces, facilitating more accurate segmentation
in complex SAR scenes.

Pseudo-channel 2 characterizes the intensity variations of
each pixel by computing statistical features—such as the mean
and standard deviation—within its local neighborhood. These
statistical measures effectively capture local texture changes and
help mitigate the impact of speckle noise. For each pixel (x, y),
the construction formula of pseudo-channel 2 is

I2 (x, y) =
√
σ (x, y) · μ (x, y). (19)

Here, σ(x, y) is the standard deviation of the area where the
pixel (x, y) is located, representing the volatility of the intensity
of this area; μ(x, y) is the mean value of the area where the pixel
(x, y) is located, reflecting the intensity level of that area.

By combining the mean and standard deviation, pseudo-
channel 2 effectively captures local texture variations while
balancing noise suppression and feature enhancement. This
synergy allows the algorithm to maintain stable feature extrac-
tion even in regions with substantial noise interference. The
statistical feature space created by this channel complements the
convolutional features of pseudo-channel 1, together improving
the accuracy and robustness of superpixel segmentation when
addressing the complex scattering characteristics inherent in
SAR images.

Pseudo-channel 3 captures the overall structural character-
istics of the image by computing global gradient information,
thereby increasing the algorithm’s sensitivity to boundaries dur-
ing segmentation. Specifically, this channel employs a multi-
scale gradient operator to calculate the gradient magnitude and
direction at the pixel level, effectively extracting geometric and
edge features present in SAR images. In complex scattering
environments, these global gradient features robustly highlight
boundary intensity differences between various ground object
types. Consequently, this pseudo-channel is crucial for enhanc-
ing the precision of superpixel segmentation. The construction
of pseudo-channel 3 can be expressed as

I3 (x, y) =
√
G2

x (x, y) +G2
y (x, y). (20)

Here, Gx(x, y) is the gradient of the image in the horizontal
direction, which is usually calculated by the Sobel operator
or other edge detection operators; Gy(x, y) is the gradient of
the image in the vertical direction. Global gradient information
effectively enhances boundary features within the image. In par-
ticular, at the interfaces between water bodies and land, gradient
values tend to be high, which significantly aids in improving
segmentation accuracy by clearly delineating these transitions.

After constructing the three pseudo-channels, they are inte-
grated into a three-channel “pseudo-color” image, which serves
as the input to the EDC-SLIC algorithm for superpixel segmen-
tation

Ipseudo (x, y) = [I1 (x, y) , I2 (x, y) , I3 (x, y)] . (21)

By fusing multiple features in this way, the pseudo-color
image simultaneously captures local texture, statistical
characteristics, and global structural information. This richer

feature representation enhances the input data for the EDC-SLIC
algorithm, significantly improving its segmentation accuracy
and robustness when applied to SAR images.

C. MFW-Otsu Algorithm

Traditional Otsu algorithm performance is limited when han-
dling the complex noise and diverse texture structures present in
SAR images. To address this, this study proposes the MFW-Otsu
algorithm that enhances adaptability by incorporating both local
mean and variance information. This approach generates a new
feature image through a weighted combination of these local
statistics, enabling a more accurate representation of texture
variations within the image. As a result, the enhanced method
not only improves handling of complex image structures but also
significantly suppresses noise interference, making it especially
well-suited for SAR images characterized by intricate noise and
texture patterns. The local mean μ is calculated as follows:

μ (x, y) =
1

N

1∑
i=−1

1∑
j=−1

I (x+ i, y + j) . (22)

Calculation of local variance σ

σ (x, y) =

√√√√ 1

N

1∑
i=−1

1∑
j=−1

(I (x+ i, y + j)− μ (x, y))2.

(23)
Next, the local mean and local variance are combined using

a weighted approach to generate a new feature image. This
fused feature captures both the intensity variations and the local
variability, thereby enhancing the texture representation within
the image. The calculation formula for the combined feature is

Icombined = α · μ (x, y) + (1− α) · σ (x, y) . (24)

Here, N is the window size (for example, a 3× 3 window);
I(x, y) is the gray value of the pixel; α is a weighting parameter
that controls the relative importance of the mean and variance
in the combined features.

To analyze the sensitivity of parameter α, this study incre-
mentally increased its value by 0.1, conducting comparative
experiments across the range α = 0.1–1.0. The results indicate
that: Lower values of α (< 0.5) emphasize local variance,
enhancing texture discrimination but amplifying noise. This
leads to increased water fragmentation and a relatively lower
OA; moderate values of α (0.5–0.8) yield a relatively balanced
outcome, achieving superior performance in most scenarios;
higher values of α (> 0.8) emphasize the local mean, effectively
suppressing noise. However, this tends to blur intricate texture
boundaries, consequently reducing accuracy.

Considering these factors comprehensively, α = 0.8 was
selected for this study. This value effectively suppresses noise
while producing relatively robust results.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This study utilizes SAR data from the Sentinel-1A satellite as
the primary data source. Launched on 3 April 2014, Sentinel-1A
operates in a near-polar sun-synchronous orbit and is part of the
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Fig. 3. Superpixel segmentation results. (a) Original image. (b) Canny edge detection result. (c) Superpixel segmentation result of the LSC algorithm.
(d) Superpixel segmentation result of the SLIC algorithm. (e) Superpixel segmentation result of the EDC-SLIC algorithm.

European Space Agency’s Copernicus program. The satellite is
equipped with a C-band SAR and orbits at an altitude of 693 km.
Its revisit period is 12 days for a single satellite and 6 days when
operating in tandem with its sister satellite. Sentinel-1A supports
four imaging modes; for this experiment, the ground range
detected (GRD) products acquired under the interferometric
wide swath mode were selected. The image data used were
captured on 24 June 2024 and 19 December 2024.

Four distinct water body scenarios were selected for the ex-
periment. Scene 1 features a water body with significant bends,
forming multiple curves. Scene 2 presents a gently bending
water body with a large, smooth curve and includes ships within
the scene. Scene 3 contains a relatively straight water body with
minimal curvature. Scene 4 exhibits a water body with a high
degree of curvature accompanied by discontinuities.

A. Superpixel Segmentation Experiment

In this study, three superpixel segmentation methods-namely
the LSC algorithm, the standard SLIC algorithm, and the SLIC
algorithm enhanced with eight-direction convolution-were
applied to the same SAR image. The number of superpixels
was set to 500, 900, and 1300, respectively, generating a
total of 36 segmentation outputs across four different regional
images. Experimental results indicate that the segmentation
performance is optimal when the number of superpixels is set to

1300. Therefore, when conducting the research on the extraction
of water body information, this paper selects the segmentation
result corresponding to the 1300 superpixel setting.

Fig. 3 presents a comparison of the segmentation effects
produced by the three algorithms under the same superpixel
number setting. Fig. 4 shows the segmentation effects of the three
algorithms under the settings of 500 and 900 superpixels. And
Fig. 5 shows the detailed display of the superpixel segmentation
results of the three algorithms. From the visualization results,
it is evident that both the LSC algorithm and the traditional
SLIC algorithm exhibit certain limitations in accurately fitting
object boundaries. Specifically, in areas where the target contour
exhibits significant curvature, the superpixel boundaries pro-
duced by these two methods demonstrate marked rigidity and
do not closely adhere to the intricate geometric shapes of the
targets. In addition, the SLIC algorithm demonstrates inferior
shape retention capabilities; its superpixel boundaries appear
disordered and lack coherent spatial consistency.

In contrast, the EDC-SLIC algorithm demonstrates notable
advantages in superpixel segmentation performance, particu-
larly for SAR images. By incorporating eight-direction con-
volution kernels, it effectively extracts multidirectional edge
and texture features. Combined with an improved distance met-
ric that considers edge intensity and logarithmic contrast, the
algorithm is better suited to handle the complex characteris-
tics and high variability in SAR imagery. Experimental results
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Fig. 4. Superpixel segmentation results. (a) Segmentation result of the LSC algorithm under the setting of 500 superpixels. (b) Segmentation result of the SLIC
algorithm under the setting of 500 superpixels. (c) Segmentation result of the EDC-SLIC algorithm under the setting of 500 superpixels. (d) Segmentation result
of the LSC algorithm under the setting of 900 superpixels. (e) Segmentation result of the SLIC algorithm under the setting of 900 superpixels. (f) Segmentation
result of the EDC-SLIC algorithm under the setting of 900 superpixels.

Fig. 5. Detailed image of the superpixel segmentation result. (a) Superpixel segmentation result of the LSC algorithm. (b) Superpixel segmentation result of the
SLIC algorithm. (c) Superpixel segmentation result of the EDC-SLIC algorithm.
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TABLE I
PRECISION RESULTS WHEN THE NUMBER OF SUPERPIXELS IS SET TO 500

indicate that EDC-SLIC not only achieves more accurate bound-
ary alignment with real-world targets but also excels in pre-
serving object shapes. In regions with curved geometries, the
superpixel boundaries generated by EDC-SLIC are smoother,
more continuous, and follow target contours more precisely
compared to those from LSC and traditional SLIC algorithms.
Across all four test scenarios, the EDC-SLIC algorithm consis-
tently maintained superior performance, accurately delineating
the contours of ground objects. Even in cases involving sig-
nificant background complexity or highly curved water bodies,
the algorithm showed no notable degradation in performance—
highlighting its robustness and adaptability. Its flexibility in
boundary definition and ability to accommodate complex ge-
ometries makes it particularly effective in segmenting water-
land interfaces and other irregular structures in SAR images.
Especially in scenarios with complex target contours (such as
the junction of water bodies and land), its segmentation effect
is significantly better than that of LSC and the traditional SLIC
algorithm. Especially in areas with complex target geometric
structures, the EDC-SLIC algorithm shows stronger boundary
capture ability and spatial consistency, laying a good foundation
for the subsequent extraction of water body information. This
comparative analysis clearly underscores the effectiveness of
the EDC-SLIC algorithm. By overcoming the limitations of
traditional methods in boundary fitting and shape retention,
it establishes a more reliable framework for superpixel-based
segmentation and offers strong support for remote sensing image
interpretation in complex and noise-prone environments.

This comparison result convincingly demonstrates the superi-
ority of EDC-SLIC algorithm based on eight-direction convolu-
tion in superpixel segmentation tasks. By effectively addressing
the limitations of traditional algorithms—particularly in terms
of boundary fitting accuracy and shape preservation—the EDC-
SLIC algorithm achieves more refined and coherent segmen-
tation results. Furthermore, its enhanced adaptability to com-
plex textures and noise-prone environments makes it especially
suitable for SAR image analysis. This improvement provides a

more robust and reliable technical foundation for high-precision
remote sensing interpretation in complex real-world scenarios.

In this article, the accuracy of the superpixel segmentation
results is evaluated through three parameters: boundary recall
(BR), undersegmentation error (UE), and over-segmentation
error (OE). The specific results are shown in Tables I–III.

In the performance evaluation of superpixel segmentation,
BR serves as a key metric for assessing the boundary reten-
tion capability of segmentation methods. A higher BR value
indicates greater accuracy in preserving the true boundaries of
objects within the image. Experimental results show that the
EDC-SLIC algorithm achieves the highest BR values among the
tested methods. This clearly demonstrates that, compared with
traditional algorithms such as SLIC and LSC, the EDC-SLIC
algorithm offers significant advantages in boundary retention.
It can more accurately capture fine details at object edges,
performing especially well in complex segmentation tasks where
boundary intricacies are prominent.

The UE quantifies the extent to which background regions are
mistakenly included within the target area in the segmentation
results. A lower UE value indicates better segmentation preci-
sion, whereas a higher value suggests that the algorithm fails to
effectively separate distinct regions, leading to the unintended
merging of areas that should remain distinct. Experimental
results show that the UE values of the EDC-SLIC algorithm
consistently remain at a relatively low level. This demonstrates
that the EDC-SLIC algorithm can significantly minimize under-
segmentation errors while preserving regional integrity. By ef-
fectively avoiding the erroneous merging of dissimilar regions,
the algorithm achieves higher segmentation accuracy and better
delineation of object boundaries.

The OE assesses the extent to which the target region is
unnecessarily fragmented during the segmentation process. A
lower OE value indicates better regional coherence, while a
higher value suggests that the segmentation method excessively
divides a single homogeneous area into multiple small segments,
thereby compromising the integrity of the region. Experimental
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TABLE II
PRECISION RESULTS WHEN THE NUMBER OF SUPERPIXELS IS SET TO 900

TABLE III
PRECISION RESULTS WHEN THE NUMBER OF SUPERPIXELS IS SET TO 1300

comparisons reveal that the EDC-SLIC algorithm outperforms
both the traditional SLIC and LSC algorithms in terms of
OE. It effectively suppresses over-segmentation, maintaining
the continuity and completeness of target regions. This high-
lights the algorithm’s strong suitability for image segmentation
tasks that require high preservation of regional structure and
integrity.

In summary, the EDC-SLIC algorithm exhibits excellent over-
all performance. It surpasses traditional algorithms in boundary
retention while effectively minimizing both under-segmentation
and OEs. These strengths underscore its robust adaptability to
complex segmentation scenarios, making it highly valuable for
practical applications. Consequently, the EDC-SLIC algorithm
offers reliable technical support for achieving high-precision
image segmentation tasks.

Furthermore, as evidenced in Figs. 3, 4, and supported by
multiple evaluation metrics, the edge segmentation accuracy
for water bodies with curved or complex terrain features is

observed to improve with an increase in the number of superpixel
segments.

B. Experiment on Extracting Water Body Information

In this article, for the original image data and their corre-
sponding superpixel segmentation results in the same scene,
three water body extraction methods are applied: the Niblack
local threshold method, the traditional Otsu algorithm, and the
MFW-Otsu algorithm. A comparative analysis and accuracy
evaluation of these methods are conducted. The specific water
body extraction results are illustrated in Fig. 6, where the black
regions represent water bodies and the white regions represent
the background.

In Fig. 6, panels (a)–(c) respectively show the water body
extraction results using the Niblack algorithm without super-
pixel fusion, the traditional Otsu algorithm, and the MFW-
Otsu algorithm across five scenarios. Panels (d)–(f) display the
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Fig. 6. Results of water body information extraction. (a) Niblack algorithm extraction result of the original image. (b) Otsu algorithm extraction result of the
original image. (c) MFW-Otsu algorithm extraction result of the original image. (d) Niblack algorithm extraction result of the fused superpixels. (e) Otsu algorithm
extraction result of the fused superpixels. (f) MFW-Otsu algorithm extraction result of the fused superpixels.

corresponding extraction results of these three algorithms af-
ter fusing superpixels. Experimental comparisons indicate that,
within the same scene, fusing superpixels leads to significant
improvements in boundary integrity, detail preservation, and
robustness against noise. In addition, the three algorithms exhibit
notable differences in their ability to maintain water boundary
integrity, retain fine details, and resist noise interference.

Specifically, the water body extraction results without super-
pixel fusion—shown in (a)–(c)—generally exhibit more frag-
mentation and discontinuity. For example, in Scene 1, the
extracted water boundaries from all three algorithms appear
blurred and suffer from significant noise interference. In terms
of detail preservation, these algorithms struggle with complex
water boundaries; as seen in Scene 3, many nonwater areas
near the water-land junction are incorrectly classified as water.
In addition, when confronted with image noise or complex
backgrounds, the algorithms without superpixel fusion are more
susceptible to interference. Although in Scenes 2 and 4 the
unfused extraction results perform relatively well, they still tend
to produce noticeable misclassifications in more challenging
scenarios.

The water body extraction results fused with superpixels—
shown in (d), (e), and (f)—are generally smoother and more

continuous. For instance, in Scene 1, all three algorithms with
superpixel integration produce clearer boundaries and improved
coherence within the water body regions. Regarding detail
preservation, the benefits of superpixel fusion are even more
evident. In Scene 3, these algorithms successfully extract fine
water body branches and accurately distinguish areas with dif-
ferent depths or color variations, offering more precise data for
subsequent water body analysis. Moreover, by considering the
overall characteristics of superpixels during fusion, the algo-
rithms demonstrate stronger resistance to noise and interference.

By comparing the water body extraction results of the three
algorithms, it is observed that although the Niblack algorithm
has certain advantages in handling images with uneven bright-
ness, it is relatively sensitive to noise. This sensitivity leads to
significant misclassification in nonwater areas, making accurate
water body extraction difficult. In contrast, the traditional Otsu
algorithm performs better in delineating water body boundaries
and demonstrates a strong noise suppression capability. How-
ever, it still faces challenges with complex local backgrounds,
often missing small water bodies or producing inaccurate seg-
mentation results.

The MFW-Otsu algorithm demonstrates enhanced robust-
ness and adaptability by effectively integrating both global and



25920 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

TABLE IV
EXTRACTION ACCURACY RESULTS OF WATER BODY INFORMATION FROM THE ORIGINAL IMAGE

TABLE V
ACCURACY RESULTS OF WATER BODY INFORMATION EXTRACTION BY INTEGRATING SUPERPIXELS

local features. It produces smooth and complete water body
boundaries, with especially strong segmentation performance
in complex background conditions. In addition, this improved
algorithm excels at preserving fine details in narrowband regions
and significantly outperforms the Niblack and traditional Otsu
algorithms in noise suppression and overall extraction accuracy.

In summary, the MFW-Otsu algorithm excels in both ex-
traction accuracy and noise resilience, making it especially
well-suited for extracting water body information from SAR im-
ages. Its superior performance offers reliable technical support
for high-precision water body monitoring and holds promising
application potential in the field of remote sensing image pro-
cessing.

This study systematically compared the three algorithms us-
ing three evaluation metrics: OA, Kappa coefficient, and F1
score. The experimental results indicate that the MFW-Otsu
algorithm, which integrates weighted mean and local variance,
demonstrates significant advantages across all indicators. Fur-
thermore, the incorporation of the superpixel fusion strategy
notably enhances the accuracy and adaptability of water body
information extraction. The detailed results are presented in
Tables IV and V.

In the performance evaluation of water body information
extraction, OA serves as a key metric to assess the general
classification accuracy of the algorithm—the higher the OA, the

better the overall performance. Experimental results show that
the average OA of the MFW-Otsu algorithm with superpixel
fusion reaches 0.9747, representing an improvement of 0.06%
and 4.45% over the traditional Otsu algorithm (0.9741) and the
Niblack algorithm (0.9332), respectively. The Kappa coefficient,
which measures the consistency between classification results
and ground truth, ranges from -1 to 1, with higher values
indicating stronger agreement. The average Kappa coefficient
of the MFW-Otsu algorithm after superpixel fusion is 0.9142,
exceeding the traditional Otsu algorithm (0.9128) by 0.15%
and the Niblack algorithm (0.7871) by 16.15%. The F1 score,
the harmonic mean of precision and recall, comprehensively
reflects the balance between classification accuracy and com-
pleteness, especially valuable in imbalanced class scenarios. For
the MFW-Otsu algorithm with superpixel fusion, the average F1
score reaches 0.9349, which is 0.07% and 12.47% higher than
those of the traditional Otsu algorithm (0.9342) and the Niblack
algorithm (0.8312), respectively.

Furthermore, the accuracy results demonstrate that integrat-
ing superpixel fusion significantly enhances the robustness and
detail-processing capability of the algorithm in complex scenes.
It enables the precise extraction of fine water body features such
as tiny branches and areas with varying depths. For example, in
Scene 3, the OA of the traditional Otsu algorithm on the original
image is 0.4977. After superpixel fusion, the OA rises sharply to



GUO et al.: RESEARCH ON FINE WATER BODY EXTRACTION FROM SAR IMAGES BASED ON SUPERPIXEL SEGMENTATION 25921

0.9861, an increase of 0.4884. Similarly, the Kappa coefficient
improves from 0.1430 to 0.9299, increasing by 0.7869. The F1
score also shows a notable increase from 0.2983 to 0.9365, a
gain of 0.6382. These results clearly indicate that superpixel
fusion greatly boosts the adaptability of the Otsu algorithm
to complex scenes, effectively reducing misclassification and
achieving more accurate water body extraction.

Based on the above-mentioned experimental results, the
MFW-Otsu algorithm demonstrates strong performance across
key metrics such as classification accuracy, consistency, and pre-
cision. Compared with the Niblack algorithm and the traditional
Otsu algorithm, the MFW-Otsu algorithm not only significantly
improves classification accuracy but also enhances adaptabil-
ity to local feature variations, exhibiting greater robustness in
handling complex backgrounds. Moreover, the integration of
the superpixel fusion strategy further boosts the accuracy and
adaptability of water body extraction, significantly enhancing
the algorithm’s capability to process fine details, especially in
challenging scenarios. These strengths enable the MFW-Otsu
algorithm to more effectively distinguish water body regions
within complex backgrounds. By improving classification ac-
curacy, consistency, and stability, this approach holds broad
potential for practical applications and wide promotion in remote
sensing image analysis.

V. CONCLUSION

This study proposes a refined water extraction method for
SAR images based on superpixel segmentation. By integrat-
ing the EDC-SLIC superpixel segmentation algorithm with
the MFW-Otsu algorithm, the method significantly enhances
the accuracy and robustness of water extraction. Experimental
results demonstrate that the EDC-SLIC algorithm outperforms
traditional LSC and SLIC algorithms in key metrics such as
boundary retention, UE, and OE, exhibiting superior adaptabil-
ity and stability in complex scenarios. Meanwhile, the MFW-
Otsu algorithm effectively boosts water body extraction accu-
racy by combining global and local features, showing excellent
performance in complex backgrounds and noise conditions.

In superpixel segmentation, the EDC-SLIC algorithm en-
hances edge sensitivity and texture capture by incorporat-
ing eight-direction convolution features, allowing superpixel
boundaries to more accurately conform to the complex con-
tours of targets. For water body extraction, the MFW-Otsu
algorithm improves adaptability to local feature variations,
effectively reduces noise interference, and boosts the accu-
racy of water body recognition by weighting local mean and
variance.

Overall, the method proposed in this article demonstrates
strong performance across multiple evaluation metrics. It not
only improves the accuracy and consistency of water body ex-
traction but also significantly enhances adaptability to complex
scenarios. This approach offers a novel and effective technical
solution for extracting water body information from SAR im-
ages, with broad application prospects. It holds important prac-
tical significance in areas such as water resource management,
environmental monitoring, and disaster early warning.

It should be noted that the proposed MFW-Otsu method
incorporates superpixel segmentation as a preprocessing step,
which enhances extraction accuracy but increases algorithmic
complexity, leading to lower computational efficiency compared
with traditional Niblack and Otsu algorithms. Future work will
focus on improving efficiency, integrating multisource data and
deep learning to strengthen automation and generalization, and
extending validation to complex large-scale scenarios with crit-
ical comparisons against SAR-specific superpixel approaches
such as Gamma-SLIC and PolSAR-SLIC.
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