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A B S T R A C T

Estimating the endpoints of age sequences is a crucial task in archaeological and geological sciences. Here we 
advance this process by addressing three major limitations in previous approaches. First, we introduce a 
maximum spacing estimation method to simplify the conventional maximum likelihood estimation approach. 
Second, we apply Monte Carlo simulations to account for uncertainties in laboratory-derived ages. Third, we 
utilize a range of probability distributions to manage sampling variability, improving the accuracy and reliability 
of chronological inferences. This method is versatile, applicable not only for estimating settlement time from 
smaller datasets but also for determining the timing of rise and fall of cultures from larger datasets. Rigorous 
testing on both simulated and real-world chronological data demonstrates the practical utility and robustness of 
this method in handling discrete and uncertainty-prone age sequences. Comparative analysis shows that different 
statistical models significantly impact the estimation of chronological boundaries. Uniform and exponential 
models provide more constrained estimates with higher confidence, while normal and log-normal models 
introduce greater uncertainty. These wider intervals may reflect underlying uncertainties, such as stratigraphic 
variability or mixed-age samples, which restrictive models may overlook. We also highlight the sensitivity of age 
sequence estimates to data size, with important implications for interpreting the temporal boundaries of 
archaeological and geological events. Therefore, researchers are encouraged to carefully assess the nature and 
frequency distribution of their chronological data before considering the narrower estimates from uniform and 
exponential models as well as the broader intervals from normal and log-normal models to build more reliable 
chronological frameworks.

1. Introduction

Estimating chronological boundaries from discrete and uncertainty- 
prone age sequences presents a clear challenge in archaeological and 
geological research due to the sporadic and imprecise nature of chro
nological data (Holland-Lulewicz and Ritchison, 2021). Discrete age 
sequences, often derived from radiocarbon dating, stratigraphy, and/or 
other dating methods, provide only limited and sometimes ambiguous 
information about the start, end, and span of archaeological and 
geological phenomena. Inferring the endpoints from these age se
quences can be further affected by various uncertainties, including 
dating errors, calibration issues, and sampling biases (Saltré et al., 
2015). For example, analogous to the Signor-Lipps effect in paleontology 
(Signor and Lipps, 1982), where the apparent last appearance of a 
species can be skewed by the incompleteness of the fossil record, the 
onset of an archaeological phenomenon will have occurred earlier than 

the earliest dated samples, while the termination will have happened 
more recently than any of the samples dated. This means that dated 
samples provide only a partial view of the actual timing of archaeo
logical events. Therefore, resolving this temporal discrepancy is crucial 
in both archaeological and anthropological sciences, as it underpins our 
understanding of various phenomena ranging from the timing of site 
occupation and abandonment (Yu et al., 2021) to the rise and fall of 
regional cultures (Zheng et al., 2021) as well as the accurate interpre
tation of the across-continental dispersal of modern humans 
(Becerra-Valdivia and Higham, 2020; Saltré et al., 2024).

Many attempts have been made to address these challenges and so
phisticated statistical and computational techniques have been devel
oped to estimate chronological boundaries (Buck et al., 1992; Steier and 
Rom, 2000; Zeeden et al., 2018). Statistical techniques diverge into two 
primary approaches: Frequentist and Bayesian. Bayesian chronological 
modeling, such as OxCal (Bronk Ramsey, 1995, 2000), BCal (Buck et al., 
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1999), and MatCalib (Yu, 2022), allow for the integration of discrete 
data points with their associated uncertainties, providing a probabilistic 
framework for inferring the timing of an interval within which the ages 
most likely fall, even when the data are incomplete or prone to error. In 
contrast to Bayesian statistics, which treats parameters as random var
iables with probability distributions, Frequentist statistics considers 
parameters to be fixed but unknown quantities. As such, Frequentist 
methods estimate these parameters based on sample data (Solow, 1993, 
1997; Herrando-Pérez and Saltré, 2024), often using techniques such as 
maximum likelihood estimation (MLE), and focus on making inferences 
based on the long-run frequency properties of the estimators. For 
example, Solow (1997) proposed that laboratory-derived ages could be 
modeled using a normal distribution, with the mean representing the 
true age and the standard deviation reflecting the dating uncertainty. 
This approach leads to a normal likelihood function for the true ages 
given the laboratory ages. However, integrating this function over a 
parametric temporal interval yields an expression that is analytically 
complex. Additionally, even after applying a logarithmic trans
formation, this integrated likelihood function remains non-concave, 
complicating the assurance of finding an analytical solution. Uncon
strained optimization using numerical methods often yields meaningless 
solutions, whereas constrained optimization consistently provides re
sults close to the minimum and maximum of the age sequence. There
fore, this complexity in the MLE-based inference of chronological 
boundaries necessitates the use of alternative robust approaches.

Maximum spacing estimation (MSE) is a robust statistical technique 
that has been widely used to estimate distribution parameters by 
maximizing the spacing between observed data points (Ranneby, 1984; 
Anatolyev and Kosenok, 2005). It is particularly effective for continuous 

distributions and offers advantages in handling small sample sizes due to 
its reduced sensitivity to outliers, providing analytically elegant 
parameter estimates that are often more reliable and less biased 
compared to other methods. In this study, we derive point estimates of 
chronological boundaries for discrete and uncertainty-prone age se
quences with an MSE-based approach. The issue of sampling biases is 
comprehensively explored by considering a range of underlying distri
butions to assess their impact on parameter estimation. To address 
dating uncertainty, we construct credible intervals through Monte Carlo 
simulations, which enhance the robustness and reliability of our infer
ence on chronological boundaries by incorporating and quantifying the 
inherent uncertainty in the data. The utility and effectiveness of this 
method are rigorously tested using both simulated datasets and 
real-world archaeological data, demonstrating its practical applicability 
and robustness in handling highly discrete and uncertain age sequences.

2. Description of the maximum spacing estimation method

Let x = {x1 < x2,⋯, < xn} denote a collection of ordered numerical 
ages in calendar years, obtained through various chronometric tech
niques such as radiocarbon dating, optically stimulated luminescence 
(OSL), and U-Th methods. The corresponding dating uncertainties are 
represented by σ = {σ1, σ2,⋯, σn}. These ages are assumed to be inde
pendent and identically distributed (iid) within an interval [α, β], rep
resenting a limited number of observations of the uncertainty-averse 
true ages denoted as t = {t1 < t2,⋯, < tn}. In this analysis, our goal is to 
estimate the endpoints of this interval (i.e., α and β) within which the 
true ages corresponding to x are likely to fall.

We apply MSE, a powerful and versatile method that has been 
increasingly used for parameter estimation across various statistical 
contexts (Ekström and Inference, 2008). This method finds the param
eter values that make the data points as evenly spaced as possible. This 
gives a simple, tidy solution. Unlike the MLE method, which looks for 
the parameters that make the observed data most probable, MSE focuses 
on the spacing pattern rather than the likelihood (Cheng and Amin, 
1983). Without loss of generality, let F(t; θ) denote the cumulative dis
tribution function of the true age t. Here t is a random variable defined 
over (or truncated to) the temporal interval [α, β], and θ represents the 
set of parameters of the distribution (θ is empty for a non-parametric 
distribution). Following Ranneby (1984), we define the one-step 
spacing, di(α, β; θ), as the gap between the values of the cumulative 
distribution function at two consecutive age points 

di(α, β; θ)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(xi; θ) − F(α; θ)
F(β; θ) − F(α; θ) , i = 1

F(xi; θ) − F(xi− 1; θ)
F(β; θ) − F(α; θ) , i = 2,⋯, n

F(β; θ) − F(xi− 1; θ)
F(β; θ) − F(α; θ) , i = n + 1

, (1) 

Clearly, 
∑n+1

i=1 di(α, β; θ) = 1. To estimate the endpoints α and β, we 
define product spacings, D(α,β; θ), as the geometric mean of the gaps 

D(α, β; θ)=

[
∏n+1

i=1
di(α, β; θ)

] 1
n+1

. (2) 

Taking the natural logarithm on both sides, this expression becomes  

Our objective is to obtain robust point estimates for α and β by 
maximizing ln D(α,β; θ). Differentiating Eqn. (3) with respect to α and β, 
respectively, yields 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂
∂α ln D(α, β; θ) =

1
n + 1

[
− f(α; θ)

F(x1; θ) − F(α; θ)

]

+
f(α; θ)

F(β; θ) − F(α; θ)
∂

∂β
ln D(α, β; θ) =

1
n + 1

[
f(β; θ)

F(β; θ) − F(xn; θ)

]

−
f(β; θ)

F(β; θ) − F(α; θ)

. (4) 

Equating ∂
∂α ln D(α, β; θ) and ∂

∂β ln D(α, β; θ) with 0 in Eqn. (4) and 
solving these equations simultaneously gives 
⎧
⎪⎪⎨

⎪⎪⎩

F(α; θ) = 1
n − 1

(nF(x1; θ) − F(xn; θ))

F(β; θ) = 1
n − 1

(nF(xn; θ) − F(x1; θ))
. (5) 

Therefore, the optimal values for α and β that maximize ln D(α, β; θ)
are given by 
⎧
⎪⎪⎨

⎪⎪⎩

α = F− 1
(

1
n − 1

(nF(x1; θ) − F(xn; θ)); θ
)

β = F− 1
(

1
n − 1

(nF(xn; θ) − F(x1; θ)); θ
) , (6) 

where F− 1(⋅) is the inverse cumulative distribution function of the true 
age t.

The above formulation provides a general framework for estimating 

ln D(α, β; θ)=
1

n + 1
∑n+1

i=1
ln[di(α, β; θ)]=

1
n + 1

[
ln(F(x1; θ) − F(α; θ)) +

∑n

i=2
ln(F(xi; θ) − F(xi− 1; θ))+

ln(F(β; θ) − F(xn; θ)) − (n + 1)ln(F(β; θ) − F(α; θ))

]

. (3) 
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chronological boundaries from age sequences, applicable to both para
metric and non-parametric distributions. Although a closed-form 
expression of the cumulative distribution is not available for a non- 
parametric model (θ is empty in this case), point estimates of end
points α and β can still be obtained from Eqn. (6) by linearly extrapo
lating the empirical inverse cumulative distribution. In the following 
section, we will explore endpoint estimations for the true ages across 
various parametric distributions. Each distribution has its own charac
teristics and assumptions, influencing the estimation process and 
robustness of the results. By deriving analytical estimates for the lower 
and upper bounds (i.e., α and β) of the age sequences, we aim to ensure 
that the estimation process is resilient to variations in the probabilistic 
model and data, thereby maintaining reliability across different distri
butional forms (Appendix).

3. Distributional framework

3.1. Uniform distribution

The uniform distribution assumes that all outcomes of the true age t 
equally likely fall in a parametric interval [α, β]. For the true ages 
distributed uniformly over this unknown interval, the estimation process 
is relatively straightforward. Elaborative algebraic work (Appendix) 
yields point estimates for α and β 
⎧
⎪⎪⎨

⎪⎪⎩

α =
1

n − 1
(nx1 − xn)

β =
1

n − 1
(nxn − x1)

. (7) 

3.2. Exponential distribution

The exponential distribution is used for modeling the time between 
events in a Poisson process. It is defined by a single rate parameter λ =
1
n
∑n

i=1xi. This distribution is often applied in contexts where events are 
assumed to occur continuously and independently over the temporal 
interval [α, β]. Endpoint estimation under this distribution requires 
careful handling of the rate parameter to ensure accurate interval esti
mates. Elaborative algebraic work (Appendix) yields point estimates for 
α and β 
⎧
⎪⎪⎨

⎪⎪⎩

α = − λ ln
(

1
n − 1

(
n exp

(
−

x1

λ

)
− exp

(
−

xn

λ

)))

β = − λ ln
(

1
n − 1

(
n exp

(
−

xn

λ

)
− exp

(
−

x1

λ

))) . (8) 

3.3. Normal distribution

The normal distribution is characterized by its mean and standard 

deviation given as μ = 1
n
∑n

i=1xi and σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n− 1
∑n

i=1(xi − μ)2
√

. It is a 
common choice due to its simplicity and well-understood properties. For 
the true ages following a normal distribution truncated to a parametric 
interval [α, β], the estimation involves assumptions about the mean and 
variance known from the laboratory-derived ages. Therefore, the 
resultant estimates of the interval are sensitive to these parameters. 
Elaborative algebraic work (Appendix) yields point estimates for α and β 
⎧
⎪⎪⎨

⎪⎪⎩

α = μ + σΦ− 1
(

1
n − 1

(
nΦ

(x1 − μ
σ

)
− Φ

(xn − μ
σ

)))

β = μ + σΦ− 1
(

1
n − 1

(
nΦ

(xn − μ
σ

)
− Φ

(x1 − μ
σ

))) , (9) 

where Φ(⋅) and Φ− 1(⋅) is the cumulative distribution function and in
verse cumulative distribution function of the normal distribution, 
respectively.

3.4. Log-normal distribution

When the natural logarithm of the true age t follows a normal dis
tribution, the mean and standard deviation are defined as μ = 1

n
∑n

i=1ln xi 

and σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n− 1
∑n

i=1(ln xi − μ)2
√

, respectively. This distribution is useful 
for modeling skewed data within a parametric interval [α, β]. After 
transforming the data into the logarithmic space (Appendix), applying 
the MSE method gives the optimal values for α and β 
⎧
⎪⎪⎨

⎪⎪⎩

α = exp
[

μ + σΦ− 1
(

1
n − 1

(

nΦ
(

ln x1 − μ
σ

)

− Φ
(

ln xn − μ
σ

)))]

β = exp
[

μ + σΦ− 1
(

1
n − 1

(

nΦ
(

ln xn − μ
σ

)

− Φ
(

ln x1 − μ
σ

)))] ,

(10) 

where Φ(⋅) and Φ− 1(⋅) is the cumulative distribution function and in
verse cumulative distribution function of the normal distribution, 
respectively.

4. Implementation and usage instructions

We have developed MatEndpt, a MATLAB package for maximum 
spacing estimation of chronological boundaries of an age sequence. The 
package features the following functionality: (1) Data handling. 
MatEndpt includes a tab-delimited text file, which users can customize 
with their own data. Users can specify the age type (e.g., 14C, OSL, U- 
series), the reservoir age (R) or reservoir age offset (ΔR), the calibration 
curve for 14C ages, and the year that samples are dated. For 14C ages, 
MatEndpt supports calibration for both marine and terrestrial samples 
from different hemispheres. Note that calibrations for post-bomb (post- 
AD, 1950) 14C ages are not supported. For marine 14C ages, if R is pro
vided, a terrestrial calibration curve should be specified; otherwise, a 
marine curve should be used. (2) Data preprocessing. After importing 
the data into the working space, MatEndpt processes them by correcting 
for any reservoir effect, converting conventional 14C ages to the F14C 
(fraction modern) space (Reimer et al., 2004), and transforming non-14C 
ages to the BP (before present, with present referring to AD, 1950) scale. 
(3) Monte Carlo simulations. Numerical ages are derived from various 
chronometric techniques, with uncertainties typically reported as 1σ 
standard deviations by laboratories. The Frequentist statistical method 
(Solow, 1997) assumes that errors in each age follow a normal distri
bution, which is generally assumed for non-14C ages. However, 14C age 
calibrations produce a probability density function (PDF) rather than a 
point estimate, often resulting in asymmetric and multimodal distribu
tions (Guilderson et al., 2005). Therefore, dating errors may not follow a 
normal distribution in this case (Andrés Christen and Pérez E, 2009; Yu, 
2022). Monte Carlo simulations are used to tackle the nonnormality of 
the calibrated 14C ages. For datasets with 14C ages, the calibration curves 
are first loaded and then the 14C ages and errors corresponding to the 
calendar ages in the curve are converted to the F14C space. A unique 
probability distribution of calendar ages is generated for each 14C age. In 
total, 20,000 age sequences are produced by resampling from these PDFs 
for 14C ages and from a theoretically normal distribution for non-14C 
ages. (4) Calculating endpoints of age sequences. Endpoints for each 
simulated age sequence are calculated using Eqn. (6)− 10 for a 
non-parametric, uniform, exponential, normal, and log-normal distri
bution, respectively. Since ages closer to the beginning and end of the 
sequence contribute more significantly to the estimate of the chrono
logical boundaries, temporal gaps are down-weighted as described by 
Herrando-Pérez and Saltré (2024). Empirical PDFs of the estimated 
endpoints are constructed through numerically differentiating their 
empirical cumulative distribution (Yu, 2024). This allows for the gen
eration of point estimates such as mean age, age at median probability, 
and modal age (Telford et al., 2004), as well as 1σ and 2σ credible in
tervals (i.e., the 68.2 % and 95.4 % highest posterior density regions) for 
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the endpoints (Hyndman, 1996).
Upon completion of the Monte Carlo simulations, MatEndpt outputs 

the following results: probability density functions, point estimates, and 
credible intervals for both the estimated endpoints and the simulated 
calendar ages. The output is organized as a list containing three objects: 
(1) point estimates and credible intervals for the lower bound of the age 
sequence, (2) point estimates and credible intervals for the upper bound, 
and (3) point estimates and credible intervals for the simulated calendar 
ages. Users can visualize the estimated endpoints by plotting their PDFs 
alongside the 68.2 % and 95.4 % highest posterior density regions. 
These visualizations can be displayed either individually or in 
conjunction with the PDFs of the simulated calendar ages. The duration 
of settlement at a site can be computed by subtracting the lower 
endpoint from the upper endpoint using the random samples generated 
during the Monte Carlo step. This process facilitates the construction of 
an empirical PDF and the calculation of point estimates and credible 
intervals. MatEndpt supports three age scales: (1) BP (before present, 
with present referring to AD, 1950), (2) B2K (before AD, 2000), and (3) 
BC/AD. Conversion between these age scales is straightforward, as 
detailed by Yu (2022).

5. Comparative analyses

5.1. Sensitivity analysis using synthesized data

5.1.1. Sensitivity to underlying distributions
We evaluate the sensitivity of endpoint estimates to variations in the 

parameters of underlying distributions and sample size. This analysis is 
crucial for understanding the robustness of the MSE method across 
different conditions. To achieve this, we first synthesize an age sequence 
comprising 50 calendar ages, drawn randomly from a temporal interval 
over 3000− 5000 years BP along with associated errors sampled from a 
gamma distribution. The gamma distribution was chosen because dating 
uncertainties are inherently positive and typically right-skewed, with 
most values being small but occasionally much larger; the gamma dis
tribution reproduces this pattern while avoiding nonsensical negative 
values. From this population, we randomly select 10 ages and convert 
them to radiocarbon ages using the IntCal20 calibration curve (Reimer 
et al., 2020). We then apply the MSE method to estimate the endpoints 

of the synthesized age sequence based on the above parametric distri
butions. Finally, we assess the accuracy and reliability of these esti
mates, exploring how variations in distributional choice and sample size 
influence the robustness of the MSE method.

The latest possible ages in the chronological sequence, represented 
by the lower bounds on the BP scale, range from about 2600 to 3200 
years BP (Fig. 1A; Table 1). The different distributions offer varying 
interpretations of the likely lower bound. The uniform distribution 
shows a relatively flat, equal-probability interval with slightly higher 
probabilities concentrated around the true age (i.e., 3000 years BP). The 
exponential distribution introduces a stronger peak in the probability 
density around the same time, suggesting a more pronounced likelihood 
for the lower bound to be closer to the true age but still with some un
certainty extending toward earlier dates. The normal and log-normal 
distributions exhibit wider credible intervals, indicating a greater de
gree of uncertainty in the lower bound estimate. These models suggest 
that, while the lower bound is most likely to fall around 3000 years BP, 
there is a broader spread of potential estimates, extending to both earlier 
and later dates, reflecting the higher flexibility of these models in esti
mating the lower bound.

The earliest possible ages in the chronological sequence, represented 
by the upper bounds on the BP scale, span approximately 4700–5300 
years BP (Fig. 1B). As with the lower bound estimates, the different 
statistical models yield distinct patterns of probability. The uniform 

Fig. 1. Probability density distributions for estimated chronological endpoints under four statistical models based on synthesized chronological data spanning 
3000–5000 years before present. Panel A presents results for the upper bound (latest possible age), while Panel B shows results for the lower bound (earliest possible 
age) of the sequence. Uniform and exponential models produce more constrained intervals, whereas normal and log-normal models yield broader intervals, reflecting 
greater uncertainty in endpoint estimation. These differences illustrate how distributional assumptions influence the inferred temporal boundaries.

Table 1 
Estimated endpoints of a synthesized age sequence spanning 3000− 5000 years 
BP under different probability distributions.

Probability 
distribution

Lower bound (years BP) Upper bound (years BP)

Mean Mode 2σ credible 
interval

Mean Mode 2σ credible 
interval

Uniform 3026 3075 [2845, 
3180]

4961 4945 [4815, 
5115]

Exponential 3025 3040 [2860, 
3170]

4959 4940 [4815, 
5115]

Normal 3015 3075 [2815, 
3180]

4974 4970 [4805, 
5155]

Log-normal 3018 3030 [2825, 
3185]

4964 4920 [4810, 
5145]
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distribution presents a wide, relatively flat probability distribution, 
though there is a noticeable peak around the true age (i.e., 5000 years 
BP), indicating a slightly higher likelihood for the upper bound in that 
range. The exponential distribution produces a sharper peak, concen
trating the highest probability around 5000 years BP. The normal and 
log-normal distributions again show wider credible intervals for the 
upper bound, suggesting greater uncertainty in the age estimates. These 
models have a broader spread, particularly the log-normal distribution, 
which displays a pronounced skewness, with a longer tail extending 
toward later dates. This suggests that under the log-normal model, there 
is a higher probability that the upper bound may be later than 5000 
years BP, whereas the normal distribution provides a more symmetric 
probability spread centered around the same time.

Our results highlight key differences in how the statistical distribu
tions influence the estimation of the lower and upper bounds of the age 
sequence. The normal and log-normal models, which assume symmetric 
and skewed probability distributions, respectively, consistently yield 
wider credible intervals for both the lower and upper bounds, capturing 
greater uncertainty in these estimates. This broader range reflects the 
flexibility of these models in accommodating variability in the data. In 
contrast, the uniform and exponential models provide narrower credible 
intervals, suggesting more constrained age estimates. The exponential 
distribution, in particular, exhibits sharper peaks in both panels, indi
cating more concentrated likelihoods for both the estimated lower and 
upper bounds to fall within known age ranges (around 3000 years BP for 
the lower bound and 5000 years BP for the upper bound).

5.1.2. Sensitivity to sample size
We illustrate the impact of sample size on estimating the lower and 

upper bounds of the same synthesized age sequence under four different 
probability distributions (Fig. 2). The sensitivity is assessed by calcu
lating relative error in percentage. For both estimates, the four para
metric distributions display similar trends, though there are notable 
differences in how they behave for small sample sizes. For the lower 
bound estimates (Fig. 2A), all models exhibit high relative error when 

the sample size is small (below 50), with the error peaking around 6 % 
for the uniform distribution and slightly lower for the other models. As 
sample size increases, the relative error rapidly declines, stabilizing at 
below 1 % for all distributions once the sample size exceeds 100. This 
indicates that smaller sample sizes lead to higher uncertainty in the 
lower bound estimates, while larger sample sizes reduce error across all 
distribution models. Similarly, for the upper bound estimates (Fig. 2B), 
the relative error starts high for small sample sizes (below 50), but the 
magnitude of the relative error is lower than that observed for the lower 
bound, peaking at around 2 % for the uniform and exponential models 
and slightly less for the normal and log-normal distributions. The error 
decreases as sample size increases, leveling off at values close to 0 once 
the sample size exceeds 100.

Our result highlights the sensitivity of lower and upper bound esti
mates to sample size, demonstrating that smaller sample sizes introduce 
greater relative error. The results suggest that the normal and log- 
normal models tend to perform slightly better in terms of minimizing 
relative error compared to the uniform and exponential models. How
ever, as the sample size grows, all distributions converge to similar, 
minimal error levels, suggesting that sample size is a critical factor in 
reducing estimation uncertainty, regardless of the chosen distribution. 
This emphasizes the importance of using sufficiently large sample sizes 
to achieve reliable and accurate chronological estimates in archaeo
logical and geological studies.

5.2. Real-world data application

5.2.1. Arrival time of anatomically modern humans in southern China
The dispersal of modern humans into China represents one of the key 

migrations of Homo sapiens out of Africa. Fossil and archaeological ev
idence suggest that modern humans reached China as early as between 
80,000 and 120,000 years ago. Key sites such as those in Zhoukoudian 
and Tianyuan Cave, have yielded fossils and artifacts indicating a rela
tively early presence of modern humans in the region. Genetic studies 
support this timeline, revealing that modern Chinese populations share 

Fig. 2. Sensitivity of estimated chronological endpoints to sample size for a synthesized age sequence spanning 3000–5000 years before present, evaluated under 
four statistical models. Relative error (%) is plotted against sample size for the lower bound (Panel A) and the upper bound (Panel B) of the sequence, respectively. 
Across all models, relative errors are highest at small sample sizes (<50) and decline rapidly with increasing sample size, stabilizing at values generally below 1 % for 
samples >100. The similarity of trends among models indicates that sample size exerts a stronger influence on estimation accuracy than the choice of statistical 
distribution, though minor differences are apparent at very small sample sizes.
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ancestry with ancient human groups that arrived during this period. The 
arrival of Homo sapiens in China marks an important phase of interaction 
with local archaic human populations, such as Denisovans and possibly 
late Neanderthals, contributing to the genetic diversity observed in 
contemporary East Asian populations. This migration not only shaped 
the demographic and genetic landscape of East Asia, but also facilitated 
the spread of new technologies, cultural practices, and adaptations to 
different environmental challenges. Here, we aim to refine the estimated 
arrival time of anatomically modern humans in southern China by 
integrating radiocarbon (14C), optically stimulated luminescence (OSL), 
and uranium-series (U-series) dating results within a probabilistic 
modeling framework.

The Liujiang hominin, found in the Tongtianyan cave (24◦10′59″N, 
109◦25′56″E), Guangxi Province, provides strong evidence for a late- 
Pleistocene presence of modern humans in East Asia. Geological and 
stratigraphic observations indicate that the sedimentary sequence in the 
cave can be subdivided into three irregularly bedded units. Unit II is 
characterized by yellowish-brown clay sediments, with abundant 
mammal remains and a nearly complete human cranium. We estimate 
the arrival of modern humans in South China from a collection of 23 
ages obtained through indirect dating of fossil-bearing sediments of Unit 
II using the 14C and OSL method as well as direct dating of human tooth 
remains using the U-series method (Ge et al., 2024). Fig. 3 depicts the 
estimated arrival time of modern humans to South China, with two 
different probability models used to constrain the age distribution. Both 
distributions demonstrate a peak age probability centered around 30, 
500 years BP, with slightly more spread in the exponential model than 
the uniform model. The narrower credible intervals in the uniform 
model suggest a more concentrated age estimate, while the exponential 
model introduces a slight right skew, indicating a greater probability of 
later dates.

Our comparative study reveals that, while both models suggest a 
similar timeframe for the arrival of modern humans to South China, the 
choice of the distribution more or less influences the uncertainty around 
the estimate. The exponential model allows for a broader range of 
possible ages, particularly beyond 31,000 years BP, whereas the uniform 
model presents a more confined age range. This suggests that, depending 
on the underlying assumptions about the nature of the event (e.g., 
gradual versus instantaneous arrival), different models can yield slightly 
different interpretations of the timing of modern human dispersal into 
South China. The overall convergence of the estimates around 30,500 
years BP, however, supports the idea of a relatively stable and reliable 
period for the arrival of modern humans in this region. Our age esti
mates for the Liujiang skeletal remains are consistent with those at the 
Tianyuan (Shang, 2010), Bailian (Zhou et al., 2019), and Laoya caves 
(Xing et al., 2017), implying that these early populations likely migrated 

along coast and inland waterways, moving through South Asia and 
Southeast Asia and reaching East Asia synchronously. Note that these 
conclusions are constrained by the limited number of directly dated 
human remains in southern China, and by the assumption that the 
selected probability models adequately reflect the true distribution of 
arrival times. Additional well-dated sites are needed to further refine the 
chronology of modern human dispersal into this region.

5.2.2. Duration of human occupation at a mound site in the lower Yellow 
River area

The Yellow River floodplain offers a unique opportunity to examine 
the interplay between human activity and fluvial system during the 
Holocene (Yu et al., 2023), being recognized as the cradle of Chinese 

Fig. 3. Estimated arrival time of modern humans in southern China based on two alternative statistical models for the distribution of calendar ages. (A) uniform, and 
(B) exponential. Both models produce closely aligned central estimates (~30,500 years before present), but the exponential model yields slightly narrower credible 
intervals, indicating higher confidence in the estimated arrival date. These results highlight the influence of distributional assumptions on temporal inferences 
regarding early human dispersal.

Fig. 4. Kernel density map of mound sites in the lower Yellow River region, 
illustrating spatial concentrations of archaeological mounds. Warmer colors 
indicate higher site densities, with clustering patterns reflecting areas of 
intensive past human activity and settlement. Red box outlines the study area, 
while filled yellow circle marks the location of the Shilipu archaeological site, a 
key reference point for understanding regional occupation patterns. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.)
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civilization due to its fertile soil and water access. Archaeological ex
cavations have revealed a continuous history of human habitation 
marked by increasing social complexity, evident in settlement hierar
chies and urban development. Excavations in the lower Yellow River 
region have uncovered mound sites that date back to the Neolithic (Jing 
et al., 1997). These mounds, typically oblong or oval and several meters 
high, are composed of yellowish coarse sands and small pebbles, 
reflecting the hilly landscape formed by an incising river system in the 
late Pleistocene and early Holocene. Kernel density estimate of Neolithic 
and Bronze Age mound sites in the Lower Yellow River region reveals 
significant clusters in the Heze and Liaocheng areas of Shandong Prov
ince (Fig. 4). The spatial concentration of these sites, with the highest 
densities found in the central zones of these two regions, likely corre
sponding to key settlement or cultural hubs during these periods. The 
proximity of the mound sites to the Yellow River highlights the central 
role of the river in shaping early agricultural societies by providing 
essential resources for farming, transportation, and trade, which facili
tated the growth and sustainability of these ancient communities. Situ
ated in a floodplain, the mounds also provided ideal habitats and refuges 
during floods (Jing et al., 1995), and as sediment accumulation 
increased (Shi et al., 2010), inhabitants elevated the mounds artificially 
to adapt to rising water levels during the middle and late Holocene.

This case study aims to reconstruct the duration of human occupa
tion at a representative mound site in the lower Yellow River floodplain, 
in order to better understand how early societies balanced the agricul
tural benefits of a fertile but flood-prone environment with the risks 
posed by hydrological instability. We estimate the settlement time of 
this site using a small dataset of radiocarbon ages from the Shilipu 
mound (35◦06′54″N, 115◦31′52″ E), which may deepen our under
standing about how early societies adapted to the challenges and 
balanced its agricultural benefits with the risks of flooding of the Yellow 
River (Yu et al., 2020). The age distribution reveals a distinct period of 
human activity or mound aggradation (Fig. 5; Table 2). The lower bound 
of the age sequence shows a calendar age cluster primarily around 2500 
BC, indicating the commencement of human occupation at this site 
closely related to the rise and expansion of the Longshan culture into this 
area (Sun, 2013). The unpredictable and frequent flooding of the 
Yangtze River during the late Holocene may have significantly impacted 
settlement patterns. Communities tend to settle in elevated areas and 

constructed mound sites as protective measures against flooding, as well 
as for ceremonial or defensive purposes. The upper bound is shown by a 
prominent peak around 200 BC, suggesting a more recent abandonment 
of this site. As shown in Fig. 6, the most likely duration of settlement at 
this site is around 2190− 2480 years (68.2 % credible interval) or 
1960− 2570 years (95.4 % credible interval).

The termination of human occupation at this site may signify an 
important shift in environmental dynamics of the middle Yellow River. 
The introduction of iron tools and the resulting population expansion 
during the Warring States period (475–221 BC) led to profound alter
ations in the landscape, particularly on the Chinese Loess Plateau. Iron 
tools made large-scale agriculture and deforestation easier, resulting in 
widespread soil erosion across the plateau. The loose, fine-grained loess 
soil, when disturbed, became highly vulnerable to erosion by water. 
Consequently, the lower Yellow River became a sediment-laden system 
(Shi et al., 2010), prone to flooding and changing its course frequently 
since the beginning of the second millennium BC (Li et al., 2021; Du 
et al., 2024). This shift in environmental dynamics could have led to a 
rapid aggradation of the floodplain and the inundation of the site by 
Yellow River floods, thus prompting the end of occupation at the site. 
The settlement time of this site represents the resilience and ingenuity of 
Neolithic and Bronze Age cultures in responding to the volatile hydro
logical regime of the Yellow River, reflecting the critical interaction 
between human settlement and environmental condition in the lower 
Yellow River basin. Overall, the settlement history of the Shilipu mound 
illustrates the resilience and ingenuity of Neolithic and Bronze Age 
cultures in responding to the volatile hydrological regime of the Yellow 
River. However, the analysis is limited by the small number of radio
carbon ages available, which constrains the precision of the estimated 
occupation duration and may overlook short-term episodes of aban
donment or reoccupation.

6. Concluding remarks

Estimating chronological boundaries from age sequences is crucial in 
archaeology, where dating accuracy and reliability are paramount. In a 
Frequentist framework, we arrive at an analytical solution to this 
problem, addressing notable gaps in existing methodologies. Key points 
in the implementation of this method include: (1) Simplifying the 
maximum likelihood estimation method through maximum spacing 
estimation. By deriving an analytical expression through maximizing the 
spacing in the data, we streamline the process while preserving the 
robustness of the endpoint estimation. This makes the method more 
accessible for practical use, reducing computational complexity while 
maintaining numerical accuracy. (2) Applying Monte Carlo simulations. 
The incorporation of a Monte Carlo approach acknowledges the inherent 
uncertainties in radiocarbon or other laboratory-derived numerical 
ages, which are rarely treated with such rigor. This step enhances the 
precision of the model by simulating a range of potential outcomes, 
adding depth to the estimates. (3) Accounting for multiple probability 
distributions. By comparing four parametric models, we acknowledge 
the complex nature of chronological datasets. A comparative study using 
synthesized data shows that different statistical models offer different 
levels of confidence, with more restrictive models (uniform and expo
nential) yielding tighter estimates, while normal and log-normal distri
butions provide a broader range. This dual approach allows for 
flexibility and highlights the need to carefully select the appropriate 
distribution based on the characteristics of the chronological dataset.

The applicability of this method to both small and large datasets 
broadens its use, whether estimating the settlement duration of a single 
site or the broader rise and decline of a regional culture. This flexibility 
is valuable particularly in the archaeological field, where data avail
ability and quality can vary greatly across sites and cultural periods. It is 
noteworthy that the broader credible intervals in the normal and log- 
normal models may indeed reflect real-world uncertainties, such as 
stratigraphic mixing or dating inconsistencies. By acknowledging this 

Fig. 5. Posterior probability distributions for the calibrated radiocarbon dates 
from the Shilipu mound in the lower Yellow River area, modeled under the 
assumption of a uniform distribution of calendar ages. Each horizontal row 
represents an individual 14C sample, with the bottom and top rows showing the 
inferred lower and upper bounds of human occupation, respectively. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.)
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variability, the presented method could offer more realistic estimates 
when data integrity is in question.

Illustrative studies using real-world data suggest that this method 
could clearly improve archaeological interpretations of human dispersal 
and settlement timing, as well as the confidence with which these con
clusions are drawn. The ability to estimate endpoints more reliably, 
while also considering the effect of different statistical models, makes 
this approach versatile for a wide range of applications, from site- 
specific studies to regional or cultural analyses. This method could 
also be applied in geological and ecological contexts, offering a broader 
utility beyond archaeology by estimating the timing of environmental or 
paleontological events from a limited number of chronological data.

Declaration of competing interest

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests: 
Shiyong Yu reports financial support was provided by the National 
Natural Science Foundation of China. If there are other authors, they 

declare that they have no known competing financial interests or per
sonal relationships that could have appeared to influence the work re
ported in this paper.

Acknowledgements

This study was funded by the National Natural Science Foundation of 
China (Grant no. 42477477). I extend my sincere gratitude to Dr. 
Christian Zeeden and an anonymous reviewer for their insightful 
comments.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.quageo.2025.101697.

Data availability

No data was used for the research described in the article.

References

Anatolyev, S., Kosenok, G., 2005. An alternative to maximum likelihood based on 
spacings. Econom. Theory 21, 472–476, 410.1017/S0266466605050255. 
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