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Regional Guidance-Based Multiscale Joint Filtering
Model for SAR Images

Chuang Sun”, Fengcheng Guo

Abstract—Synthetic aperture radar (SAR) imaging systems are
characterized by their all-weather and day-and-night capabili-
ties, enabling the acquisition of high-resolution ground imagery.
However, the presence of speckle significantly hinders the effective
utilization of SAR images. In this article, a novel coherent speckle
suppression method was proposed, leveraging the statistical char-
acteristics and texture information inherent in SAR data. To ac-
count for the texture features of SAR images, a new guide map—
termed regional guided images—was developed and integrated
into the nonlocal means framework to implement a region-based
speckle reduction approach. Double hesitant neutrosophic set func-
tions were constructed by incorporating both the statistical distri-
bution and multiscale features of SAR images. In addition, sur-
face variation was introduced to model the nonlocal self-similarity
properties of SAR data. By embedding this framework into non-
local filtering models, the proposed method effectively achieved
coherent speckle suppression while preserving structural details.
Comparative experiments on real SAR images demonstrate that the
proposed method outperforms several state-of-the-art techniques.
It achieved a favorable balance between speckle reduction and
edge preservation, as evidenced by both visual assessments and
quantitative evaluations. These results verify the effectiveness and
advancement of the method in SAR image speckle suppression.

Index Terms—Hesitant neutrosophic set (HNS), multiscale filter-
ing, regional guided images (RGIs), speckle reduction, synthetic
aperture radar (SAR).

1. INTRODUCTION

YNTHETIC aperture radar (SAR), a prominent form of
S active remote sensing, has been widely employed in military
applications, surveying and mapping, and disaster monitoring
due to its unique capability for all-weather, day-and-night ob-
servation [1], [2], [3], [4]. However, the inherent fidelity of SAR
imagery is unavoidably degraded by speckle, which arises from
the coherent superposition of backscattered radar signals and
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significantly impairs subsequent interpretation tasks [5], [6], [7],
[8]. Consequently, the development of reliable speckle suppres-
sion algorithms for SAR images remains critically important.

Suppressing speckle while preserving the intrinsic informa-
tion of SAR images has remained a central challenge in SAR
image processing. In recent years, researchers worldwide have
dedicated considerable effort to this issue, leading to the de-
velopment of numerous innovative methods and algorithms.
Early speckle reduction techniques primarily relied on multi-
look processing, which, although effective at reducing coherent
speckle, often resulted in diminished spatial resolution. How-
ever, with the expansion of SAR applications and the growing
demand for high-resolution imagery, spatial domain filtering has
gradually supplanted traditional multilook approaches as the
preferred method [9]. Spatial domain filtering utilizes sliding
windows to compute local statistical measures and suppress
speckle by exploiting pixel-level correlations. While effective
in homogeneous regions, this approach frequently blurs edges
and degrades texture details. Notable algorithms in this category
include Lee filtering [10], extended Lee filtering [11], Kuan
filtering [12], Frost filtering [13], and Gamma-MAP filtering
[14]. To address the limitations of spatial domain methods,
various transform domain filtering techniques have been intro-
duced, such as wavelet transform [15], ridgelet transform [16],
curvelet transform [17], contourlet transform [18], and shearlet
transform [19]. These methods operate by filtering the image
in the transform domain, allowing for more effective represen-
tation and suppression of speckle while preserving structural
details. However, this process often required complex shear-
let transformations, which could result in smooth transitions,
blurred edges, and the emergence of pseudo-Gibbs artifacts.
To improve filtering performance, anisotropic diffusion (AD)
techniques were introduced into SAR image de-speckling. AD
filters suppressed speckle primarily by computing pixel-wise
diffusion coefficients and applying partial differential equations
to filter images across multiple scales. Representative algorithms
in this category included speckle reducing anisotropic diffusion
filtering (SRAD) [20], detail preserving anisotropic diffusion fil-
tering [21], and pixel difference function-local entropy-speckle
reducing anisotropic diffusion filtering [22]. Although AD filters
achieved effective speckle suppression, they often caused more
pronounced edge blurring and introduced artifacts. Moreover,
their performance was highly sensitive to parameter selection—
such as the diffusion coefficient and the number of iterations—
which varied considerably depending on the characteristics of
the input image.
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In recent years, deep learning methods have attracted sig-
nificant attention in the field of SAR image denoising. Rep-
resentative algorithms included SAR-convolutional neural net-
work [23], SAR-dilated residual network [24], multiobjective
network (Monet) [25], G-Monet [26], multiscale feature adap-
tive enhancement network [27], and adaptive noise estimation
and despeckling network [28]. These approaches leveraged the
powerful feature extraction capabilities of neural networks to
effectively suppress speckle in SAR images. However, most
supervised deep learning algorithms were designed to handle
specific speckle levels, and their generalization performance
was highly dependent on the availability of large-scale training
datasets. Moreover, real SAR images often differed substantially
from synthetic training data in terms of speckle characteristics
and scene complexity. This domain gap limited the performance
of deep learning-based filters in complex, real-world scenarios,
often resulting in suboptimal despeckling outcomes.

In 2005, Buades et al. [29] introduced the nonlocal means
(NLMs) filtering algorithm for denoising additive speckle im-
ages, providing a novel framework for speckle suppression in
SAR imagery. The NLM algorithm exploited nonlocal sim-
ilarity by identifying pixel patches similar to a target patch
and computing their weighted similarity for effective despeck-
ling. However, the traditional similarity measurement in NLM
was relatively limited and often failed to achieve satisfactory
performance in complex terrain scenarios. To overcome these
limitations, extensive research was conducted both domestically
and internationally. Feng et al. [30] proposed a method that
utilized the probability density function (pdf) of the intensity
ratio between patches to assess similarity. While this technique
effectively suppressed coherent speckle in homogeneous re-
gions, it showed limited capability in preserving edge features
and retaining point scatterers. Deledalle et al. [31] introduced a
probabilistic patch-based (PPB) despeckling algorithm for SAR
images, which measured similarity based on the probabilistic
correspondence between image patches, deviating from the con-
ventional Euclidean distance metric. This approach assumed that
coherent speckle in SAR multilook images followed a general-
ized Gamma distribution. Although the algorithm demonstrated
strong performance in speckle smoothing and edge preservation,
it also tended to produce noticeable pseudo-texture artifacts.
Zhong et al. [32] later proposed a SAR de-speckling method
based on Bayesian NLMs, introducing a statistical distance
metric to evaluate similarity between image blocks. This ap-
proach demonstrated excellent speckle suppression capabilities.
Parrilli et al. [33] developed a method to determine the optimal
local linear minimum mean square error in the wavelet domain
and successfully applied block-matching 3-D to SAR despeck-
ling (SAR-BM3D). Cozzolino et al. [34] further advanced this
work by introducing the fast adaptive nonlocal SAR denoising
algorithm (FANS), which offered higher speckle suppression
efficiency but was susceptible to over-smoothing. Ferraioli et al.
[35] introduced the concept of ratio blocks, achieving speckle
suppression based on statistical similarity between blocks. By
incorporating AD techniques, they improved edge and texture
preservation. Vitale et al. [36] proposed a technique utiliz-
ing guided images to perform SAR image de-speckling by

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

integrating SAR and registered optical images. Although this
method achieved superior speckle reduction, it presented chal-
lenges in data acquisition. Ni and Gao [6] developed the
Bayesian NLM generalized guided filter, which enhanced SAR
despeckling by combining Bayesian inference with NLMs and
guided filtering.

Inspired by the strengths and insights of the previously dis-
cussed joint methods, this study conducted a comprehensive
investigation into the multiscale characteristics of SAR images.
We introduced the concept of a regional guidance image and
implemented multiscale filtering strategies, which led to the
development of an innovative speckle suppression algorithm for
SAR imagery. The primary contributions and novelties of this
research are summarized as follows.

1) A novel regional guidance multiscale joint filtering
method (RG-MSJF) was proposed. In the initial phase
of constructing regional guided images (RGIs), advanced
edge detection operators were incorporated. These opera-
tors effectively captured and highlighted the edge features
of the image, thereby establishing a strong foundation
for the subsequent filtering processes applied to regional
images.

2) The similarity metric of the NLMs algorithm was re-
designed by integrating three distinct modules. The first
module calculated the correlation coefficients between
the target patch and similar patches, emphasizing the
importance of global information in the filtering process.
In the second and third modules, we designed surface
variational and double hesitant neutrosophic sets (HNSs),
respectively, to enhance the preservation of local edge
information throughout the filtering process.

3) The statistical characteristics of SAR images were thor-
oughly investigated, and a novel edge detection model
based on the theory of double HNSs was proposed. This
model was designed to overcome the limitations of the
traditional NLM algorithm, particularly its reliance on a
single similarity measurement index and its tendency to
cause significant edge information loss. By introducing
this innovative approach, the model achieved improved
despeckling performance while preserving critical edge
details.

The rest of this article is organized as follows. Section II
introduces the speckle model for SAR images and presents
the complete RG-MSJF algorithm. Section III describes the
quantitative and visual experiments conducted to evaluate the
algorithm and discusses the influence of several key parameters
on the filtering results. Section IV conducts validation experi-
ments on the proposed algorithm, selecting representative land
features on SAR images. Finally, Section V summarizes the
contributions and findings of this study.

II. RELATED WORKS
A. SAR Statistical Model

Let Y represent the SAR images with speckle, and X denote
the corresponding speckle-free amplitude images; the speckle n
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introduced by the coherent imaging process, is spatially corre-
lated with each other according to the following equation:

Y (r,c) =X (r,c) -n(rc) (D

where 7 and ¢, respectively, represent the coordinates of pixels
within the image domain © C R2. Under the hypothesis of fully
developed speckle, the speckle in SAR images is commonly
modeled as a Gamma distribution with a unit mean and a
variance of 1/L, and L represents the number of looks. The
pdf is modeled as follows:

P(N) = ik LENF e BN N >0,L>1 (2
where I'(+) denotes the Gamma function. To characterize the
statistical properties of SAR images, Frery et al. introduced the
G° model [37]. This model assumes that the speckle component
follows a Gamma distribution, while the terrain backscattering
is modeled by an inverse Gamma distribution. These assump-
tions enable effective representation of both homogeneous and
heterogeneous regions within SAR images. The pdfs of the G°
distribution for amplitude and intensity SAR images are given
as follows:

2LET (L — o)y~ > A%E-L
T(L)T (~a) (v + LA%)"®
—a,v,L>1,A>0

LT (L — o)y o1t !
I'(L)T(-a) (y+LD)"

—a,v, L>1,A>0. 3)

P§’ (4507 L) =

P (s L) =

Among these, A and I respectively represent amplitude and
intensity SAR images; v denotes the scale parameter; and «
characterizes the roughness of the observed region. A smaller
value of —« indicates higher homogeneity, whereas a larger
value corresponds to greater heterogeneity. Fig. 1(b) illustrates
the probability density function of the fitted GY distribution
under various parameter settings. It is evident that as the param-
eter o — oo, the G distribution converges toward the Gamma
distribution. Fig. 1(c) presents the results of fitting histograms
derived from real high-resolution SAR images using several
statistical models. Specifically, the GV distribution [38], Gamma
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Fitting SAR images with different statistical models. (a) Real SAR image. (b) Effect of parameters on the G’? distribution. (c) Histogram and fitted pdfs.

distribution [39], [40], K distribution [41], and Weibull distribu-
tion [42] are employed to approximate the pdf. To evaluate the
effectiveness of these models, the Jensen-Shannon divergence
(JSD) [43] is computed between the histograms of the fitted pdfs
and the empirical SAR data. This metric provides a quantitative
measure of similarity, with lower JSD values indicating a better
fit. This can be modeled as follows:

1 F,+G, 1 F,+G,

1 2F, 2G
= - F,log —*— log —t— )du.
2/< #OgFu‘*‘Gu—FGH OgFu+Gu> 8
“)

Here, F' and G denoted two distinct probability distributions.
1 represents a random variable. KL represents the asymmetric
distance between two probability distributions. The computed
JSD values for each model are as follows: 0.0406 for the Gamma
distribution, 0.0494 for the K distribution, 0.0695 for the
Weibull distribution, and 0.0245 for the G° distribution. These
results demonstrate that the G° model provides a significantly
better fit to real SAR images compared to the other models.
This conclusion is further supported by the visual evidence
presented in Fig. 1(c). To validate the above findings with greater
robustness, experiments were conducted using a selection of
50 representative real SAR images, including different land
features such as mountains, rivers, cities, farmland, and roads.
The outcomes revealed that the JSD value for the G° model was
1.7311, which is substantially lower than the values observed
for the Gamma model, X model, and Weibull models—2.8585,
5.6079, and 3.6797, respectively. These results suggest that
the G° model is particularly well suited for characterizing the
statistical properties of SAR images, outperforming the other
evaluated models in both visual and quantitative assessments.

B. Nonlocal Means Filter

Let 2 C 2 denote the domain of definition for the intensity
SARimage Y: ) C R2. Let the speckled image be denoted as Y,
the target patch for filtering as ), , and the neighboring patches
as P,, where ¢,k represent the central pixel positions of these
patches, respectively. The term w(P,, (),;) denotes the similarity
weight, which quantifies the degree of resemblance between
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Fig. 2. Main concept of the NLM algorithm.

patches. The specific concept of NLM is shown in Fig. 2. Let
Y (r,¢) and NL(r, ¢) denote the pixel values at location (7, ¢)
in the original and restored images, respectively. €),. . represents
the set of neighboring pixels of coordinate point (r, ¢). The NLM
algorithm estimates NL(r, ¢) by computing a weighted average
of pixel values across all patches within the search window in
(r, ¢). The model is expressed as follows:

— EQ’V‘,C w(PIi7QL)Y(T, C)
NL (r,¢c) = So w (P Q) (5)
where
Y (Q)-Y (P2,
w (P, Q,) = exp 7” (@) - ( )”2 s

The algorithm employed the Euclidean distance to quantify
the similarity between two neighboring patches. Here, a > 0
denoted the standard deviation of the Gaussian kernel. || - ||
represents absolute value operation. The parameter A > 0 rep-
resented the filtering coefficient, which was commonly used to
modulate the extent of filtering attenuation. While the NLM
algorithm effectively suppressed speckle, it was accompanied
by side effects such as edge blurring and information loss.

C. Regional Guidance Multiscale Joint Filtering

The RG-MSJF method differed from traditional NLM tech-
niques in two principal ways, aiming to enhance speckle sup-
pression and preserve edge details within the filtering frame-
work.

1) The integration of RGI into the filtering process: This
approach effectively addressed the issue of edge loss
by applying partitioned filtering based on RGI, thereby
minimizing its adverse effects on the filtering results.

2) The replacement of the single Euclidean distance metric
with a multiscale feature metric: Given the diverse terrain
information present in images, it was essential to adopt
a multiscale, multiangle, and multirange similarity mea-
surement to more accurately capture the complexity of the
data.
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Fig. 3. Flowchart of the RG-MSJF method.

Fig. 3 presents the flowchart of the proposed algorithm. The
following are the main steps of RG-MSJF.

Step 1: For a SAR image defined within region 2 C R2 a
NL strategy was employed to construct the RGI. Specifically,
for each pixel (r, ¢) under evaluation, a reference neighborhood
Q, . was utilized to generate the final partition outcome. The
detailed RGI model is presented as follows:

: VG, ® Yol
® (r,c) = sign | exp —Z@gﬂm | T | )

Here, V denoted the gradient operator; O represents the sub-
block of Q, .. G, signified the Gaussian kernel function; and
®@ represented the convolution operation. The parameter 7" > 0
functioned as an adjustment variable, designed to stabilize the
output across varying regions of the image. It was assigned a
higher value in homogeneous patches—where pixel values were
relatively uniform—and a lower value in heterogeneous patches,
where significant transitions occurred between different pixel
values. This adaptive approach ensured that the output remained
consistent and controlled according to the local characteristics
of the image. The term <i>(r7 ¢) indicated the category or class
to which the pixel (r, ¢) was assigned. To mitigate artifacts and
enhance filtering quality as much as possible, it was proposed to
categorize edge regions into a distinct class. The function sign(-),
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which served as a sign indicator, was defined as follows:

0, z>1le—2
sign(z) =<¢1, le—6<z<le—2. (8)
2, z<le—6

In this classification scheme, Category 0 denoted homoge-
neous patches; Category 2 signified heterogeneous patches; and
Category 1 referred to edge-adjacent areas, where the central
pixel did not lie directly on the boundary. The RGI derived from
the aforementioned strategy served as a crucial reference for
subsequent filtering experiments.

Step 2: To better capture the intrinsic characteristics of SAR
images in the similarity measurement metrics of NL algorithms,
similarity evaluation indicators were developed from a multi-
scale feature perspective. Drawing on the statistical properties of
SAR imagery, previous experiments confirmed that, compared
to alternative distribution models, the G distribution provided
a superior fit for SAR images. Specifically, for a given SAR
image, using the G distribution to model heterogeneous patches
yielded more effective results than modeling homogeneous
regions. The JSD served as a robust metric to quantify the
discrepancy between the fitted G° distribution and the SAR
image histogram. To accurately assess the effectiveness of the
G° model in fitting heterogeneous patches, the concept of the
HNS was introduced. The HNS consisted of three components:
the true membership degree, the indeterminate (or uncertain)
membership degree, and the false membership degree [44].
These components were used to represent the degree of uncer-
tainty inherent in complex information. The formal definition of
the HNS is provided as follows:

M:{f(a),%(a),f(a)\ae/x}. )

Here, i(a), i(a), and f(a) correspond to the true membership
degree, indeterminate (or uncertain) membership degree, and
false membership degree, respectively, of an element abelonging
to the set M. The HNS Pyns(7, ¢) is defined as follows:

1 1
Pans (1,¢) = S8, (Mrz[l = A1) + 59, . (mlm) . (10)

In this context, the intelligent sets £o,. . and vq, . were
established within the double hesitation framework. Set §a,.
captured the membership degree of speckle points associated
with edge points in the SAR image, while set g _ encap-
sulated the background information of the image. The term
A1 denoted the JS distance between the fitted GO distribution
and the histogram of the SAR image, which was formulated as
follows:

A =1SD (G} (Y) Hist(Y)) . (11)

The A5 metric leveraged the spectral entropy of SAR images
to assess the uncertainty of speckle associated with edge points.
Spectral entropy, a measure widely used in remote sensing image
analysis, is commonly employed to represent the complexity
of spectral information present in signals or images [45], [46].
Terrains with greater complexity typically exhibited higher spec-
tral entropy values, whereas smoother and more homogeneous
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terrains displayed lower values. The precise formula for this
calculation is as follows:

400

Ao (X) = —

(z)log (f (z)) dzx (12)

—00

where f(x) represents the pdf of the signal =, with the pdf of

the GY distribution utilized. The term 1 — A; characterizes the
false membership degree of {q, .. To derive the final hesitant
membership value, the three membership degrees were modeled
as follows:

A (1 —Ag)

= 13
EQT,C 1—&-)& ( )

In the HNS g, ., the elements 7; and 72 jointly defined the
background characteristics of the image. Here, 7; represented
the contrast information, while 7 denoted the coefficient of
variation of the image. The detailed computations for these
parameters were presented as follows:

1 a=R b=R
= \/]?,2 Za:fR szfR (Y (’I" + a) ) (C + b) - MQ(T,C))
(14)

o (Qrc)
()

where o (£, .) and p (€2,..) denote the standard deviation and
mean of the search window, respectively, and R represents the
radius of the similar window. The membership degree of the
HNS (€, .) was expressed as follows:

N2 = 5)

U (Qre) =mlog2(2+n2). (16)
Based on this, the first similarity measure w1 (Q,, P, )of the
RG-MSIJF model was calculated. The similarity measure w;
ranged from O to 1, where smaller values indicated higher
similarity, and larger values indicated lower similarity

|Quns (¥ (c)) — Pans (¥ (Q2r))]]-

A7)

The second similarity measure incorporated a surface varia-
tion strategy, which was highly effective in distinguishing flat
from uneven areas. Specifically, inhomogeneous regions of SAR
images, fitting pixel values onto a three-dimensional surface
revealed that small variations corresponded to flat areas. In
contrast, heterogeneous regions exhibited large differences in
pixel values, indicative of uneven areas. Thus, surface variation
techniques provided a robust indicator for quantifying regional
similarity.

The framework of the surface variation strategy is illustrated
in Fig. 4. Neighboring pixel values were selected to fit onto a
surface. Here, FS(Q,) and FS(P,;) represent the tangent planes
of the fitting surfaces corresponding to the central pixel window
and the domain window, respectively. By employing principal
component analysis and utilizing the covariance matrix, the nor-
mal vector €, of the tangent plane was calculated. The covariance

w1 (Qu, Pr) :/

Q(r,c)
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Fig. 4. Framework of the surface variational strategy.

matrix C' was constructed as follows:

(18)

k
C=13 @0 - p)
i=1

where k represents the number of selected neighboring pixels,
and p denotes the mean of the kneighborhoods. The covariance
matrix C' is a semi-positive definite matrix with eigenvalues
o'y A1l Ae” (Mo’ < A1" < A9'). The corresponding eigenvectors

€p, €1, and € form an orthogonal coordinate system. The
eigenvector €y can be approximated as the normal vector of the
tangent plane. It serves as a measure of the plane’s inclination,
thereby reflecting the surface’s evenness. Based on this, the
second similarity metric wo(Q,, P, )in the RG-MSJF model was
calculated

w2 (Qu, P) = /

Q(r,c)

o (Q.) - eo (Px)
lleo (@)l lleo (Pl

19)

The similarity measure wo(Q,, P,;) ranges from 0 to 1.
Higher values of wy(Q,, P ) indicate greater similarity between
the two patches, while lower values suggest lesser similarity.
The third similarity metric employs the correlation coefficient
between the central pixel patch and the neighboring patches. The
specific model is as follows:

Z\m (Q. = 1q,) (P — pp,)

V0 @~ 1)*Txe (P — ip,)?

(20)
where || denotes the total number of pixels within the win-
dow. The similarity between two patches is quantified using
the correlation coefficient, which ranges from O to 1. A higher
correlation coefficient, approaching 1, signifies a high degree of
similarity in the pixel value distributions between the patches.
Conversely, a lower correlation coefficient, closer to 0, indicates
lesser similarity.

w3 (Qm Pn)

Step 3: Subsequently, the RGI was integrated into the compu-
tation of the final weight. The ultimate similarity measurement
metric for the RG-MSJF model was formulated as follows:

Y (Q,) - Y (P.)|?
exp <_ (Q.) h2( )2,a> 1)

w(Qu, P = =

T(Qr c)
_C-A(wl,m,wa))‘ '
r,c)= 528 p
w(Q,, P)re=t = L P ( ? B(Q.)=2(Py)
Ola(q,)2a(P,)
(22)
(@)

7C'A(w1,w2,w3))‘
2(Q.)=2(Px)

exXp ( (0.8-h)>

w(QL, PK)Q(T,C):Q _

Ola(Q,)2e(p,)
(23)

where ( is a moderating variable used to control the output
within a reasonable range, and T'(§2,. ) represents the number of
clusters. ®(Q,) = ®(P,) represents that the central sub block
and the domain sub-block belong to the same RGI category.
®(Q),) # ®(P,) represents different categories. A two-cluster
strategy was employed to focus on preserving and calculating
the similarity of pixels that are similar to the central pixel. For
dissimilar pixels, the similarity calculation was omitted. The
model for A(wq, ws,ws) was defined as follows:

(14 wy)?

A(wl,w27w3) = w2+W3 .

(24)

In accordance with the aforementioned formula, the RG-
MSJF model employed the conventional NL method for filtering
homogeneous regions. This approach leveraged the traditional
NL method’s superior capability in suppressing speckle in such
regions. For edge and near-edge regions, a partition-based eval-
uation strategy was utilized. Specifically, a smaller filtering
attenuation coefficient was applied to edge regions to enhance
the preservation of edge information. In addition, only pixels
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belonging to the same category as the central pixel were consid-
ered for similarity measurement, while pixels of different types
were excluded. Similarity in this context was determined using
the K-means clustering method.

D. Parameter Estimation of the G° Model

Parameter estimation for the G° distribution remains a sig-
nificant technical challenge that limits its practical application.
Freitas et al. proposed using first- and second-order moments
for parameter estimation [47], while Frery et al. suggested em-
ploying one-half- and one-fourth-order moments [37]. However,
both approaches exhibit reduced fitting accuracy due to their
inability to achieve full-range parameter estimation. Moreover,
maximum likelihood estimation also fails to yield accurate fit-
ting results, primarily because of the complexity of the nonlinear
solution process involved.

To address these challenges, a parameter estimation method
based on the Mellin transform and logarithmic cumulants is
adopted in this paper. As noted in [48], when the true radar
cross-section component of the ground object exhibits certain
fluctuations, the second-type statistic based on the Mellin trans-
form treats the speckle component as a “Mellin convolution,”
which significantly simplifies parameter estimation. The first
and second types characteristic functions derived from the
Mellin transform are defined as follows:

ox (5 =MT[PE" (0] ()= [~ x1P¢" () ax
0

(25)

Ux () =ln(ox) (s)- (26)

Calculate the derivative of the second type of characteris-
tic function at s = 1, which yields the logarithmic cumulative
quantity

dk\IfX (S)

Isk (27)

Cr =

s=1

By combining the G distribution, the second type of charac-
teristic function was obtained follows:

U, (s) = (s—l)ln(n)—i—ln( (n+s—1)

+in(T(—a—(s—1))—In(T () —Iin((—«a)). (28)
Then, the logarithmic cumulants of each order corresponding
to the GO distribution were derived by assuming that z, x5 ,

., xyy are N sample observations

€ = % Zi\]:l In (z;) (29)

&= Ly In* (2 — @)
Among them, ®(¢) =dlog(I'(¢))/d{ represents the
Digamma  function, and  ®(k,() = d*roy(T(C))/dC*

represents the kth order Polygamma function. The estimated
expressions for the parameters L, v, and « of the GOistribution
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are as follows:

(%) +2(0) -2 (-a) = § L In(w;)
®(1L,7)+P(1,-a) =% 2L, In? (z; — C1) -
(2,m) - (2, ) ZNvalln (z; — 1)

(30)

E. Algorithm

Based on the presented derivations, the proposed algorithm
called RG-MSJF is summarized in Algorithm 1.

Algorithm 1: RG-MSIJF Algorithm.
Input: SAR Image Y, the search window size NV, similarity
window size M, the filtering attenuation coefficient h
Step:
For all patches to be filtered
For all patches in the search window
1). Determine the category<1>(
which plaques @, and P, belong
2). Calculate HNS through (10). Generate the first
metric wy (Q,, P.) based on (17).
3). Calculate weight wo (Q,, P,
4). Calculate weight ws(Q,, P,
5). Calculate weight w(Q,, P,
(23).
End for
Compute the estimated value:

) and $(Q,) to

. ) according to (19).
.. ) according to (20).
.. ) according to (21) to

P.)-Y()
ZL,HEQ,»YC w(Qm Pn)

R (re) = e (@

€29

End for
Return: de-speckled image X (r, ¢)

III. EXPERIMENT PARAMETERS AND ANALYSIS

This section presents an experimental analysis of the proposed
RG-MSIJF algorithm. First, the SAR filtering models used for
comparison were introduced. Next, the quality assessment meth-
ods employed were described. Finally, the parameter settings of
the proposed algorithm were thoroughly discussed, followed by
detailed analyses.

A. Comparison Algorithms

As discussed in Section I, numerous SAR denoising models
have been proposed. To comprehensively evaluate the perfor-
mance of the proposed algorithm, six filtering models were
selected for comparative experiments, namely NLM [29], PPB
[31], FANS [34], SRAD [20], SARBM3D [33], SAR-NNFN
[7], and EnLee [10].

B. Quantitative Indexes

Quantitative evaluation is essential for verifying the effec-
tiveness of SAR filtering algorithms. In recent years, numerous
methods for SAR speckle assessment have been proposed. An
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Fig. 5. Influence of parameter / on the filtering results of real and simulated SAR images. (a) ENL and ESI indicators for the real SAR image. (b) and (c) ENL

and ESI indicators for the simulated SAR images.

effective speckle suppression model should balance speckle
smoothing with edge preservation. Accordingly, the following
evaluation indicators were employed in the experiment.

1) Equivalent number of looks (ENL) [9]: ENL measures
the level of speckle suppression by computing the ratio of
the square of the sample mean to the sample variance in
homogeneous regions.

Edge saving index (ESI) [49]: ESI reflects the edge-
preserving capability of the filtering model in both hor-
izontal and vertical directions.

Coherent equivalent number of looks (CENLs) [50]:
CENL assesses the speckle smoothing performance by
analyzing the correlation between the filtered image and
the ratio image.

Homogeneous evaluation factor (HoEF) [51]: HoEF as-
sesses the speckle smoothing capability of de-speckling
models in homogeneous patches using the gradient differ-
ence and speckle suppression index, as well as the fuzzy
index.

Heterogeneous evaluation factor (HeEF): HeEF evaluates
amodel’s ability to preserve edge information in heteroge-
neous patches by analyzing both global and local features.
IQE_HHSP: This metric combines HoEF and HeEF to
provide a comprehensive evaluation of SAR image de-
speckling performance.

2)

3)

4)

5)

6)

C. Parameter Settings

The performance of a despeckling algorithm depends on the
settings of several parameters, such as the search window size,
filtering attenuation coefficient, and number of iterations. In
the proposed RG-MSJF method, the following parameters were
configured.

1) Search window size V.

2) Similar window size M.

3) Filter attenuation coefficient h.

The search window and similarity window were set to sizes of
15 x 15 and 7 x 7, respectively. Empirical studies have shown
that further increasing the window sizes does not significantly
improve the final algorithm’s performance. These values were

selected to balance computational efficiency and filtering effec-
tiveness, thereby minimizing time complexity while achieving
satisfactory results. The parameter h was set to 50. This value
is closely related to the degree of speckle smoothing. Since the
RG-MSIJF method adopts a region-guided filtering strategy and
applies lower filtering coefficients specifically to edge patches,
a relatively large value of h was chosen. This setting aims to
enhance suppression of coherent speckle while minimizing the
loss of edge information. To quantitatively evaluate the effect of
the h value on filtering performance, ENL and ESI were used
as reference indicators. The relationship between / and these
indicators is illustrated in Figs. 5 and 6. Specifically, Fig. 5(a)
presents results based on real SAR images, while Fig. 5(b) and
(c) uses simulated SAR images with different looks. Additional
details are provided in Fig. 6.

As depicted in Fig. 5(a), the ENL value consistently increases
with risingh, while the ESI index decreases correspondingly
before eventually stabilizing. Notably, when h is within the
range ofh € (0,50], both indicators exhibit significant varia-
tion. However, for h > 50, the ENL and ESI values remain
relatively stable. Based on these findings from real SAR image
experiments, it is evident that 4 € [50, 100] achieves an optimal
balance between speckle suppression and edge preservation in
the proposed algorithm. Turning to the simulated SAR image ex-
periments shown in Fig. 6, the ENL index across different looks
displays a consistent trend: it increases with growing hwhen
h € (0,20], and stabilizes thereafter. In contrast, the EST index
shows divergent trends. For images with L = 16 and L = 256,
the ESI index increases, while images with other looks exhibit
a decreasing trend. Importantly, the ESI index stabilizes across
all look conditions when h > 20. These results suggest that the
RG-MSIJF model struggles to simultaneously balance speckle
suppression and edge preservation when filtering simulated im-
ages with L = 16 and L = 256. Considering the above analysis,
the parameter h was set to 50 in the comparative experiments.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To validate the performance of the proposed algorithm, a
series of experiments were conducted onreal SAR images, as de-
tailed in the following sections. All experiments were performed
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Fig. 7. Real SAR images used in comparative experiments. (a) Ravir. (b) Mountains. (c) Harbor. (d) Roads. (e) Buildings.
TABLE I
RIVER EVALUATION INDICATORS

GF3\Rivers ENL ESI CENL HeEF HoEF IQE_HHSP
EnLee 14.86 0.19 0.60 0.97 1.49 0.44
NLM 24.64 0.12 0.54 0.96 1.72 0.48
SARBM3D 2.35 0.66 1.57 0.99 0.12 0.18
SRAD 18.29 0.09 0.57 0.77 1.48 0.41
PPB 19.67 0.22 0.51 0.95 1.74 0.48
FANS 26.47 0.30 0.49 0.97 1.88 0.51
SARNNFN 4.62 0.51 1.50 0.06 0.16 0.06
RG-MSIJF 34.26 0.27 0.46 0.98 2.34 0.58

using MATLAB R2022a in an environment configured with an
Intel 17 processor, 16 cores, and an NVIDIA RTX 4060 graphics
card. The experimental data were obtained from representative
regions selected from SAR images captured by GF-3, Sentinel-1,
and TerraSAR-X. Both Sentinel-1 and TerraSAR-X datasets
are publicly available through their respective official websites.
The SAR image used in this study is shown in Fig. 7. For all
comparative algorithms, parameter settings followed the default
values specified in their respective source literature.

A. Experiment on GF-3 Images

Initially, despeckling experiments were conducted on selected
regions of GF-3 images, such as river and harbor areas. The
results of these experiments are illustrated in Tables I and II. In
these tables, the best-performing values are highlighted in bold.

1) River: Visually, all eight filtering models demonstrate
a degree of effectiveness in speckle suppression; however,
their performance varies significantly. As shown in the mag-
nified region of Fig. 8, PPB and RG-MSJF exhibit the most
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TABLE II
HARBOR EVALUATION INDICATORS
GF3\ Harbour ENL ESI CENL HeEF HoEF IQE_HHSP

EnLee 38.23 0.15 0.63 0.95 1.53 0.53
NLM 55.98 0.09 0.57 0.92 1.74 0.57
SARBM3D 4.14 0.66 1.6 0.99 0.11 0.20
SRAD 46.65 0.08 0.60 0.73 1.51 0.50
PPB 60.73 0.21 0.56 0.98 1.72 0.57
FANS 73.71 0.30 0.54 0.97 1.82 0.59
SARNNFN 4.73 0.53 1.48 0.32 0.18 0.12
RG-MSIJF 78.70 0.25 0.53 0.98 2.28 0.69

Fig. 8. Comparison of RG-MSJF with popular methods for de-speckling a river image. (a) EnLee. (b) NLM. (¢) SARBM3D. (d) SRAD. (e) PPB. (f) FANS.

(g) SAR-NNFN. (h) RG-MSJF.

effective smoothing, with a superior ability to eliminate speckle.
FANS, EnLee, NLM, and SRAD follow, achieving moderate
smoothing, although some surface roughness remains visible.
In contrast, SARBM3D and SAR-NNFN demonstrate the least
effective suppression, with residual speckle remaining promi-
nent. Regarding edge preservation, EnLee, NLM, FANS and
SRAD suffer from noticeable detail blurring and poor reten-
tion of edge structures. Conversely, PPB and RG-MSIJF effec-
tively preserve edge information while maintaining smoothness.
However, PPB introduces noticeable pseudo-texture artifacts.
SARBM3D and SAR-NNFN preserve edge features well but do
so at the expense of speckle suppression. From a quantitative
perspective, RG-MSJF ranks highest in ENL, CENL, and HoEF
metrics, indicating its superior performance in both speckle
suppression and structural fidelity. SARBM3D and SAR-NNFN
perform best in the ESI index, reflecting their focus on edge
preservation, yet their relatively low scores in ENL, CENL,
and HoEF suggest a tradeoff in overall speckle suppression. In

summary, RG-MSJF and PPB achieve the best and second-best
overall rankings, respectively. In contrast, the edge-focused
strategies employed by SARBM3D and SAR-NNFN result in
lower performance on the comprehensive IQE_HHSP metric.
2) Harbor: Visually, all eight filtering models demonstrated
some degree of coherent speckle suppression. As illustrated in
the blue-highlighted region of Fig. 9, FANS and RG-MSIJF stand
out with superior speckle suppression performance, whereas the
other six models exhibit undersmoothing. However, both FANS,
PPB and NLM introduce noticeable artifacts into the filtered
images. In the red-marked extended region, EnlLee, NLM,
and SRAD show significant edge blurring, indicating a loss of
structural detail. The quantitative results presented in Table II
are consistent with these visual observations. The proposed
RG-MSJF model achieves the best performance in speckle
suppression within homogeneous regions and ranks second in
edge preservation within heterogeneous regions, thus effectively
balancing speckle reduction and texture retention. However,
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Fig. 9.
(g) SAR-NNEN. (h) RG-MSJE.
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(d)

(h)

Comparison of RG-MSJF with popular methods for de-speckling a harbor image. (a) EnLee. (b) NLM. (c) SARBM3D. (d) SRAD. (e) PPB. (f) FANS.

TABLE III
ROADS EVALUATION INDICATORS

Sen-1\Roads ENL ESI CENL HeEF HoEF IQE_HHSP
EnLee 92.60 0.19 0.51 0.35 0.96 5.22
NLM 137.33 0.11 0.47 0.15 1.03 4.88

SARBM3D 23.01 0.48 0.73 0.41 0.20 4.85
SRAD 114.09 0.11 0.49 0.11 0.94 4.74

PPB 335.45 0.11 0.40 0.24 1.32 5.24
FANS 71.12 0.22 0.54 0.33 0.64 4.98
SARNNFN 517.46 0.14 0.37 0.15 1.46 5.16
RG-MSJF 204.74 0.16 0.43 0.37 1.34 5.44

its ESI value is slightly lower than those of SARBM3D and
SAR-NNFN, both of which prioritize edge preservation at the
cost of speckle suppression. FANS and PPB strike a balance
between speckle suppression and edge preservation; however,
their tendency to generate false textures undermines any
advantage they might otherwise offer in these two metrics. The
HeEF score of RG-MSIJF is comparable to that of PPB, whereas
SAR-NNFN exhibits the poorest performance in this metric.
In terms of comprehensive evaluation, the IQE_HHSP metric
indicates that RG-MSJF achieves the highest overall ranking,
demonstrating robust and balanced performance across all
assessed criteria. FANS ranks just behind RG-MSIJF in overall
performance. NLM and PPB yield comparable results, achieving
a reasonable balance between speckle suppression and edge
preservation. EnlLee and SRAD perform slightly worse than
NLM and PPB, while SAR-NNFN ranks lowest, suggesting that
its emphasis on edge preservation compromises overall image
quality. Overall, the proposed RG-MSJF model demonstrates a
favorable tradeoff between speckle reduction and edge retention.

B. Experiment on Sentinel-1 Images

Next, filtering experiments were conducted on road and
mountainous regions within Sentinel-1 images. The filtering
results are illustrated in Figs. 10 and 11, with the corresponding
quantitative evaluation results provided in Tables IIT and IV. In
these tables, the best-performing values are highlighted in bold.

1) Roads: Visually, all eight filtering models achieved a
certain degree of coherent speckle suppression. EnLee, NLM,
FANS, and SARBM3D exhibit noticeable undersmoothing, with
residual speckle remaining in the filtered images. In contrast,
PPB and SAR-NNEFEN effectively suppress coherent speckle,
producing smoother textures. RG-MSIJF stands out by success-
fully preserving detailed information, maintaining both texture
and structural integrity. From a quantitative perspective, the
evaluation results are consistent with the visual observations.
SAR-NNFN attains the highest scores in the ENL and CENL
metrics, reflecting strong speckle suppression capability. How-
ever, its ESI and HeEF scores are relatively poor, indicating
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(e) ®

Fig. 10.
(2) SAR-NNFN. (h) RG-MSIJF.
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(d)

(® (h)

Comparison of RG-MSJF with popular methods for de-speckling a road image. (a) EnLee. (b) NLM. (c) SARBM3D. (d) SRAD. (e) PPB. (f) FANS.

Fig. 11.
(2) SAR-NNFN. (h) RG-MSIJF.

excessive smoothing and a loss of fine details. FANS and EnLee
excel at edge preservation, yet their comparatively modest noise
suppression curtails their IQE_HHSP scores. RG-MSJF excels
in the HoEF metric and the comprehensive evaluation index
(IQE_HHSP), due to its balanced performance in both speckle
suppression and information preservation. While PPB is effec-
tive inreducing speckle, it introduces some false texture artifacts,
resulting in slightly lower overall performance compared to
RG-MSJF.

Comparison of RG-MSJF with popular methods for de-speckling a mountain image. (a) EnLee. (b) NLM. (¢) SARBM3D. (d) SRAD. (e) PPB. (f) FANS.

2) Mountains: Visually, all eight filtering models suppressed
coherent speckle in mountain images. EnLee, NLM, and SRAD
exhibited smooth transitions in the filtered images. FANS,
PPB, SARNNEFN, and RG-MSIJF achieved a good balance be-
tween speckle suppression and edge preservation. In contrast,
SARBM3D demonstrated relatively poor speckle suppression.
Regarding evaluation metrics, SARNNEN attained the best re-
sults in ENL and CENL, indicating strong speckle suppression
capabilities; however, its performance on edge-related metrics,
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TABLE IV
MOUNTAINS EVALUATION INDICATORS

Sen-1\ Mountains ENL ESI CENL HeEF HoEF IQE_HHSP
EnLee 11.66 0.32 0.94 0.81 0.60 3.53
NLM 13.60 0.30 0.88 0.81 0.75 3.69

SARBM3D 4.77 0.68 1.47 0.85 0.15 2.96
SRAD 11.95 0.21 0.93 0.36 0.61 3.32
PPB 16.12 0.31 0.83 0.60 0.89 3.72
FANS 8.26 0.48 1.09 0.80 0.42 3.31
SARNNFN 17.73 0.22 0.80 0.07 0.84 3.38
RG-MSIJF 10.77 0.48 0.97 0.57 0.85 3.67

(a) (b) (© (d
(© ® () ()

Comparison of RG-MSJF with popular methods for de-speckling a building image. (a) EnLee. (b) NLM. (c) SARBM3D. (d) SRAD. (e) PPB. (f) FANS.

Fig. 12.
(2) SAR-NNFN. (h) RG-MSJF.

such as HeEF and ESI, was less favorable. FANS exhibits
pronounced pseudo-texture artifacts, which reduces their edge
preservation ability. SARBM3D showed the opposite trend, per-
forming well in edge metrics but poorly in speckle suppression
metrics. Both PPB and RG-MSIJF consistently ranked among
the top across all indicators, demonstrating their effectiveness
in balancing speckle suppression and edge preservation. The
traditional NLM model showed no significant advantage in
either speckle suppression or edge preservation. Considering
comprehensive indicators, PPB and RG-MSJF exhibited the best
overall performance, followed by NLM, SARNNFN, EnLee,
SRAD, and FANS. SARBM3D ranked lowest. The RG-MSJF
model proposed in this article was validated both visually and
through quantitative metrics, confirming its effectiveness and
advancement in filtering mountain images.

C. Experiment on Terra-SAR X Image

Finally, filtering experiments were conducted on specific ar-
eas, including buildings and roads, in the TerraSAR-X image.

The results are visually presented in Fig. 12. Corresponding
quantitative evaluation indicators are detailed in Table V, with
optimal values highlighted in bold for clarity.

1) Buildings and Roads: As illustrated in Fig. 12, the fil-
tering results revealed distinct characteristics among the mod-
els. EnLee, SRAD, and NLM continued to exhibit pronounced
over-smoothing, resulting in a loss of fine details. PPB and
FANS displayed noticeable false textures, which were visually
distracting. Meanwhile, SARBM3D and SARNNEN retained
more residual speckle compared to the other models.

From the perspective of quantitative evaluation, EnLee,
SRAD, and NLM demonstrated a significant advantage in
the ENL indicator, reflecting strong speckle suppression ca-
pabilities. However, this advantage came at the cost of over-
smoothing, as evidenced by their poorer performance in the
HoEF indicator. This tradeoff aligned with visual observations,
where excessive smoothing caused the loss of important struc-
tural information.

SARBM3D and SARNNN, conversely, achieved better re-
sults in the ESI and HeEF indicators, highlighting their ability
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TABLE V
BUILDINGS EVALUATION INDICATORS

TSX-2\Buildings ENL ESI CENL HeEF HoEF IQE_HHSP
EnLee 16.88 0.10 0.81 0.27 0.60 7.99
NLM 30.19 0.06 0.68 0.13 0.75 7.98
SARBM3D 295 0.69 2.13 0.43 0.15 6.80
SRAD 25.15 0.04 0.71 0.15 0.61 7.85
PPB 26.13 0.15 0.71 0.27 0.89 8.05
FANS 17.68 0.26 0.78 0.37 0.85 7.94
SARNNFN 3.99 0.46 1.66 0.42 0.84 7.36
RG-MSIJF 10.49 0.31 0.98 0.39 0.85 8.02
to preserve edges and details. Nevertheless, their strategy of ACKNOWLEDGMENT

prioritizing edge preservation over speckle suppression was not
advisable, as indicated by its lowest ranking in the comprehen-
sive indicator IQE_HHSP. Sacrificing speckle suppression for
edge preservation resulted in suboptimal overall performance.

The proposed RG-MSJF model, while not the top performer
in any single indicator, demonstrated balanced performance.
It effectively suppressed speckle while preserving most edge
information, as evidenced by its second-place overall ranking.
This balanced approach ensured that the model maintained an
adequate level of detail without excessive smoothing or speckle
retention, making it a robust choice for filtering applications.
These results substantiate the model’s pronounced efficacy and
clear superiority in despeckling of TSX images.

V. CONCLUSION

This article introduces a novel multiscale joint filtering model,
termed RG-MSIJF, based on region-guided maps. The pro-
posed algorithm integrates traditional NLM filtering models
and employs region-guided images to facilitate partitioned fil-
tering. This approach effectively mitigates the adverse effects
of speckle suppression on edge information, a common issue
in conventional filtering models. By fully leveraging multiscale
features—including spatial pixel information and statistical im-
age characteristics—it reconstructs the similarity measurement
index of NLM. The algorithm’s efficacy in speckle suppression
and detail preservation was rigorously evaluated using various
types of ground objects inreal SAR images. Experimental results
demonstrated that the proposed method is highly competitive
compared to mainstream algorithms, effectively suppressing
both over-smoothing and under-smoothing while retaining im-
portant information. However, a significant limitation of the
algorithm is its high computational cost, largely due to the
multiple iterations required for G° distribution fitting, which
increases complexity. For a SAR image of size W x H, the
proposed algorithm exhibits a computational complexity of
O(WH (2N + 1) M?) in its standard implementation. Future
research will focus on extending this algorithm to other domains,
such as transform-domain filtering and AD filtering, to further
enhance its capabilities. Furthermore, integral images and mul-
tithreaded parallelism should be integrated to reduce the overall
time complexity.

The authors express their gratitude to the anonymous re-
viewers for their valuable comments and insightful suggestions,
which significantly contributed to the improvement of this study.
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