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A B S T R A C T

Net Primary Productivity (NPP) serves as a critical indicator for assessing terrestrial ecosystem quality and 
characterizing carbon sequestration capacity. Utilizing a long-term NPP remote sensing inversion dataset, this 
study systematically uncovers the spatiotemporal evolution patterns of vegetation NPP in Asia through historical 
trend analysis, identification of mutation nodes, ecological stability assessment, multi-scale periodic feature 
analysis, and sustainability forecasting. The combined driving effects of topographical constraints, climate 
variability, and human activities are quantitatively examined using structural equation modeling (SEM), eluci
dating the multifactorial synergistic impact on vegetation productivity. The main findings are: (1) Temporally, 
Asian vegetation NPP exhibits a fluctuating upward trend with a principal cycle of approximately 20 years, 
marked by two distinct rise-decline transitions during the study period. (2) Spatially, a clear southeast-high/ 
northwest-low differentiation pattern is observed, with significant NPP increases in East Asian monsoon re
gions and South Asian agricultural zones, contrasted by declines in tropical rainforests (notably in the Malay 
Archipelago) and eastern Mongolian grasslands. (3) Persistence analysis indicates that 53 % of vegetated areas 
exhibit random NPP variability, 4 % maintain stable conditions, and only 2 % (mainly in South and East Asian 
croplands) show sustained growth potential. A trend reversal from negative to positive is noted in 27 % of the 
regions (e.g., Malay Archipelago and eastern Mongolia), while 12 % of cropland-dominant areas may face growth 
stagnation or decline. (4) Driver quantification demonstrates climate factors exert the strongest explanatory 
power (total effect: 0.38), while topography generates complex influences through direct negative (-0.14) and 
indirect positive (0.04) effects. Human activities (total effect: 0.06) are primarily driven by synergistic GDP- 
population growth. These findings provide a scientific foundation for evaluating Asian ecosystem services and 
guiding regional carbon cycle management under global change scenarios.

1. Introduction

Net Primary Productivity (NPP), a core parameter quantifying 
photosynthetic carbon fixation capacity and energy flow in terrestrial 
ecosystems, is operationally defined as the difference between carbon 
assimilated through photosynthesis and carbon loss via autotrophic 
respiration (Field et al., 1998; Li et al., 2021). Recognized as a critical 
proxy for ecosystem productivity, NPP plays a pivotal role in global 
carbon equilibrium and climate regulation (Piao et al., 2005; Wang 
et al., 2023a). This metric serves not only as a fundamental criterion for 
assessing ecosystem health and sustainability but also as the cornerstone 
for modeling global carbon cycle dynamics and investigating climate 

change feedback mechanisms (Yu, 2020). The Asian continent harbors 
the world’s most extensive terrestrial ecosystems (accounting for 29.4 % 
of the global land area) and experiences the most intense 
human-induced pressures (supporting 59.3 % of the global population). 
The spatiotemporal dynamics of its NPP are therefore critical in regu
lating the global carbon budget. The continent’s complex topographic 
gradients, climatic diversity, and intensive human-environment in
teractions collectively drive highly heterogeneous and nNar NPP dy
namics (Chen et al., 2025). Consequently, comprehensive analysis of 
Asian NPP’s spatiotemporal dynamics and multidimensional drivers 
becomes critically imperative for advancing mechanistic understanding 
of carbon cycling processes spanning regional to global scales, 
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enhancing quantitative assessments of ecosystem service functionalities, 
and supporting data-driven strategies for sustainable development.

To elucidate the interannual variation patterns of NPP, we calculated 
annual mean NPP using the dataset detailed in Section 2.2.1. Initially, 
the Maximum Value Composite (MVC) was applied to create monthly 
NPP, which effectively mitigated the influence of environmental noise 
like cloud cover and atmospheric disturbances. Subsequently, the 
annual mean NPP was obtained by averaging the monthly NPP values, 
and its interannual dynamic characteristics on a continental scale were 
analyzed.

In recent years, the integration of multi-source data with vegetation 
productivity estimation models has provided solutions for constructing 
long-term NPP datasets (Liang et al., 2015, 2023; Qiu et al., 2023). 
Based on this, the interannual variability and trend inflection points of 
NPP have been preliminarily identified through anomaly indices and 
Mann-Kendall mutation tests (Wang et al., 2023b). However, the 
multi-scale periodic oscillations of NPP remain insufficiently investi
gated. Notably, wavelet analysis, distinguished by its time-frequency 
localization capabilities, effectively captures cyclical patterns, abrupt 
shifts, and phase transitions in temporal sequences (Arjasakusuma et al., 
2025). This study applies this technique to Asian NPP time-series anal
ysis, specifically investigating 20–30-year scale climate oscillation 
response mechanisms.

Spatially, existing research predominantly focuses on static NPP 
distribution patterns, while the analysis of spatiotemporal co- 
evolutionary patterns and sustainability characteristics remains meth
odologically constrained. Although coefficient of variation (CV) and 
linear regression trend analyses partially characterize spatial heteroge
neity (Liang et al., 2022; Zhou et al., 2025), they inadequately quantify 
long-term dependency in vegetation dynamics. The Hurst exponent, as a 
fundamental parameter in fractal theory, can effectively diagnose trend 
persistence (H > 0.5) or anti-persistence (H < 0.5) in time series through 
rescaled range analysis (R/S) (Emamian et al., 2021; Huang et al., 2023), 
which provides a suitable mathematical tool for predicting the future 
evolutionary path of NPP. This study proposes to establish a 
three-dimensional analytical framework of "fluctuation intensity–trend 
direction–sustainability," integrating the coefficient of variation (CV), 
univariate linear regression trend analysis, and the Hurst exponent. The 
framework aims to extract orderly spatiotemporal evolution patterns of 
NPP from complex vegetation dynamics in Asia, thereby providing a 
scientific basis for a deeper understanding of ecosystem variability 
across different regions of the continent.

The driving mechanisms underlying Asian terrestrial NPP dynamics 
remain incompletely characterized at continental scales. While existing 
studies have established that multifactorial drivers, including climatic 
parameters (temperature, precipitation) and anthropogenic distur
bances (land-use changes, agricultural practices, urbanization), collec
tively influence NPP variations (Gu et al., 2022; Sha et al., 2022; Xue 
et al., 2023). Nevertheless, existing research predominantly targets 
localized representative areas with temporally constrained short-cycle 
observations, failing to deliver an integrated assessment of 
continent-scale long-term NPP dynamics trajectories. Furthermore, 
while some studies have attempted to elucidate the driving mechanisms 
of climate and anthropogenic factors on NPP variations, their reliance 
on linear statistical models limits their ability to capture nonlinear 
synergistic effects among drivers (e.g., interactions between topography 
and human activities) or identify latent mediating pathways (e.g., in
direct climatic effects modulated by topography). Structural equation 
modeling (SEM) is a multivariate statistical technique that differs from 
conventional approaches such as correlation or regression analysis by 
simultaneously examining complex relationships among multiple 
dependent and independent variables, while also revealing mediation 
effects that are often overlooked by linear models (Li et al., 2023; Quan 
et al., 2023). This allows for the explicit quantification of both direct and 
indirect effects of climatic factors (e.g., temperature, precipitation) and 
human activities (e.g., population size, economic output, industrial 

structure) on NPP variations. Therefore, this study analyses the driving 
mechanisms of NPP changes by factors such as climate and human ac
tivities through SEM models, quantifies the relative contributions of 
each driver, and reveals their interactions, in order to provide more 
comprehensive and systematic references for scientists and policy 
makers.

This study addresses these gaps through an integrated analytical 
framework: (1) Multiscale temporal variability analysis using anomaly 
indices and wavelet decomposition; (2) Spatiotemporal pattern identi
fication via coefficient of variation (CV) and linear trend analysis; (3) 
Persistence characterization with Hurst exponent evaluation; (4) 
Mechanistic driver quantification through SEM implementation. The 
research results will provide scientific basis for adaptive management 
and optimisation of carbon neutral pathways in Asian ecosystems.

2. Study area and data

2.1. Study area

Asia (10◦S-80◦N, 25◦E-170◦W), the largest and most topographically 
complex continent on Earth, encompasses diverse geomorphological 
features. The region is predominantly characterized by plateaus and 
mountain ranges, with the Tibetan Plateau, renowned as the "Roof of the 
World", radiating numerous mountain chains and plains, creating a 
distinctive "high center with surrounding lowlands" topographic 
pattern. Climatically, Asia exhibits remarkable diversity, ranging from 
frigid to temperate and tropical zones, with particularly prominent 
monsoon systems (Krishnan et al., 2025) that significantly influence 
global hydrological cycles. The region supports diverse vegetation types, 
from tropical rainforests to boreal coniferous forests, forming rich eco
systems (Fig. 1). As a crucial carbon sink and heat source under the 
circumstances of global climate change, Asia’s response and feedback 
mechanisms to climatic variations exert substantial influence on the 
global climate system. These distinctive characteristics make Asia’s 
terrestrial ecosystems particularly valuable for scientific investigation of 
NPP and its driving factors, with significant practical implications.

2.2. Research data

To analyze the spatiotemporal variations of NPP and their driving 
mechanisms in Asian terrestrial ecosystems, multiple datasets are uti
lized in this study, including NPP data (5 km resolution), land cover data 
(30 m resolution), human activity data (statistical data), topographic 
data (30 m resolution), and climate data (11 km resolution). The sources 
and descriptions of these datasets are presented in Table 1. For the 
analysis of driving factors, all datasets undergo resampling to a consis
tent 5 km resolution, maintaining spatial uniformity and enabling 
comparative analysis.

3. Research method

3.1. Trend analysis methods

In this study, the trend analysis of NPP variations across Asia is 
conducted using a combined approach of univariate linear regression 
analysis and F-significance testing. The slope of the regression equation 
is employed to represent the trend of vegetation NPP changes at each 
grid point over the study period (Liang et al., 2022). The calculation 
formula is presented as follows: 

Slope =
n ×

∑n
i=1(i × Vari) −

∑n
i=1i ×

∑n
i=1Vari

n ×
∑n

i=1i2 −
( ∑n

i=1i
)2 (1) 

In the equation, n represents the number of years in the study period, 
and Vari denotes the change value for the i year. The slope of the trend 
line is represented by Slope, where a positive value (Slope > 0) indicates 
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an increasing trend in vegetation NPP over the n year study period, 
while a negative value (Slope < 0) signifies a decreasing trend.

Based on the F-significance testing critical value table, the critical 
values are determined as 8.531 for the 0.01 significance level and 4.494 
for the 0.05 significance level. Consequently, the NPP slope values are 
classified into six distinct categories (Table 2).

3.2. Wavelet analysis

Wavelet analysis enables the decomposition of signals into sums of 
wavelet functions with different frequencies and positions, thereby 

revealing the time-frequency characteristics of signals. The two primary 
variables in wavelet transformation are scale (inversely proportional to 
frequency) and translation (related to time), allowing wavelet analysis 
to simultaneously capture signal variations in both time and frequency 
domains. This multi-resolution analysis facilitates the observation of 
periodic characteristics in signals. Among various wavelet functions, the 
Morlet wavelet is particularly widely applied in periodic analysis due to 
its excellent time-frequency localization properties. Therefore, this 
study employs Morlet wavelet transformation to analyze the periodic 
variations and temporal patterns of Asian NPP from 1981 to 2018. The 
continuous Morlet wavelet is defined as (Ghaderpour et al., 2023): 

φ(t) = π−
1
4e− iw0 te−

t2
2 (2) 

The Morlet wavelet is derived from the product of a complex sinusoid 

e− iw0 tand a Gaussian envelope e−
t2
2 , whereφ(t)represents dimensionless 

time,w0denotes dimensionless frequency, andπ−
1
4serves as a normaliza

tion factor ensuring unit variance (Lara et al., 2018).

Fig. 1. Study area (with the background of remote sensing classification of vegetation types).

Table 1 
Types and sources of research data.

Data type Data name Data source and description

Basic 
dataset

NPP dataset GLASS Dataset from National 
Earth System Science Data Center 
(http://www.geodata.cn)

Land cover data ESA GlobCover Land Cover Data 
(https://www.gscloud.cn/)

Driving 
factor 
dataset

Human activity data (GDP, 
population, industrial 
structure)

World Bank Population Resources 
and Industrial Structure Dataset 
(https://data.worldbank.org)

Topographic data (elevation, 
slope, aspect)

Derived from ETOPO Global 
Relief Model and DEM Dataset, 
NOAA National Centers for 
Environmental Information (https 
://www.ncei.noaa.gov/products)

Climatic data (cumulative 
precipitation, mean 
temperature, maximum and 
minimum temperatures)

Climate Dataset from National 
Earth System Science Data Center 
(https://www.geodata.cn/ma 
in/)

Table 2 
Slope classification standard.

Slope Level

Slope < − 8.531 Extremely significant reduction
− 8.531 < Slope < − 4.494 Significant reduction
− 4.494 < Slope < 4.494 No-significant change
4.494 < Slope < 8.531 Significant increase
Slope > 8.531 Extremely significant increase
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3.3. Volatility analysis

As a standardized measure of relative variability, the CV serves as an 
indicator of temporal stability, where higher values signify greater NPP 
variability and increased system instability over time, while lower 
values indicate relative stability (Lu et al., 2023). The CV is calculated by 
normalizing the standard deviation against the mean, thereby elimi
nating dimensional effects and enabling cross-dataset comparisons, 
particularly suitable for analyzing NPP across different ranges. The 
calculation formula is expressed as (Dong et al., 2024): 

CV =
stdev
NPP

(3) 

stdev =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(NPPi − NPP)2

n − 1

√
√
√
√
√

(4) 

In the equation, stdev represents the standard deviation of NPP, and 
NPPdenotes the mean NPP over the study period.

To facilitate a more intuitive interpretation of NPP variability, the CV 
values are categorized into five distinct levels (Table 3) (Chen et al., 
2022).

3.4. Sustainability analysis based on the Hurst index

The Hurst exponent, originating from hydrological time series 
analysis, quantifies long-range dependence in sequential data through 
Rescaled Range Analysis (R/S). This method enables robust identifica
tion of stochastic walk characteristics and persistence deviations in 
temporal patterns, and has become an essential tool for investigating 
sustainability attributes in ecological processes (Jiang et al., 2017). This 
study adapts the Hurst framework to assess persistence characteristics in 
vegetation NPP dynamics, with the core computational formula 
expressed as: 

ln
(

R
S

)

= H⋅ln(m) + C (5) 

In the equation, R denotes the subsequence extreme deviation (dif
ference between maximum and minimum values), S represents the 
subsequence standard deviation, m indicates the sub-interval length, H 
corresponds to the Hurst exponent, and C signifies a constant.

The integrated application of the Hurst exponent with trend analysis 
elucidates fundamental patterns in NPP dynamics: when H∈(0.5,1), the 
series is persistent (H→1 persistence is enhanced) and the future trend is 
in the same direction as history; H = 0.5 is a random wandering; and H∈

(0,0.5) exhibits an anti-sustainability, with the future trend inverted 
from history (Table 4).

3.5. Structural equation modelling

For the analysis of NPP driving factors, we employed the SEM 
approach. Inspired by previous research (Sha et al., 2022), the driving 
factors of NPP are categorized into three groups: topographic factors, 
climatic factors, and human activities, which are considered as unob
served variables within the SEM structure. A conceptual model is 

constructed accordingly (Fig. 2). Specifically, the observed variables for 
topographic factors include slope, aspect, and elevation; for climatic 
factors, maximum temperature, minimum temperature, mean temper
ature, and precipitation are considered; and for human activities, GDP, 
population, primary industry, secondary industry, and tertiary industry 
are included as observed variables.

The SEM model was assessed using four standard fit indices: the 
Goodness of Fit Index (GFI), the Comparative Fit Index (CFI), the In
cremental Fit Index (IFI), and the Root Mean Square Error of Approxi
mation (RMSEA). When the values of the first three indices are close to 1 
and the RMSEA is near 0, the model is deemed robust and effective. After 
confirming a satisfactory model fit, we examined the standardized path 
coefficients to evaluate how different driving factors influence vegeta
tion NPP. This yield estimates of each driving factor’s direct and indirect 
contributions, illustrating how these factors interact to jointly influence 
NPP across Asian ecosystems.

4. Results and analysis

4.1. Interannual variation characteristics of Asian NPP

The annual variability of NPP across the Asian continent from 1981 
to 2018 exhibits a fluctuating ascending pattern (Fig. 3). The temporal 
variation curve of Asian NPP can be divided into three distinct phases, 
with 1989 and 2000 as the boundaries. During the period 1981–1989, 
NPP shows significant fluctuations, particularly with a notable decline 
from 1986 to 1989, reaching a trough in 1989. This decline is likely 
associated with the strong La Niña phenomenon and the global cooling 
event during 1988–1989. From 1989 to 2000, NPP demonstrates a 
steady increasing trend, peaking in 2000. After 2001, NPP remains 
relatively stable, with a slight decline observed in 2008, which may be 
attributed to widespread precipitation and temperature anomalies in 
Asia caused by the La Niña phenomenon during that period. The MK 
mutation analysis that the UB and UF curves of Asian NPP intersect 
within the confidence interval, identifying 1998 as the only mutation 
point. The UF curve exceeds the 0.05 significance level (Fig. 4), indi
cating a significant mutation in the NPP time series around 1998.

The Morlet wavelet analysis is applied to the time series data of Asian 
NPP, with the results presented in Fig. 5. During the period 1981–2018, 
three distinct high-value centers (1981, 2002, and 2018) and two low- 
value centers (1989 and 2010) are identified (Fig. 5a). Additionally, a 
strong oscillation cycle is observed at the 20–35 year time scale 
(Fig. 5b). The analysis reveals periodic fluctuations of 28 years, 16 years, 
and 5 years, with the 28-year cycle being the primary period, while the 
16-year and 5-year cycles represent the secondary and tertiary periods, 
respectively (Fig. 5c). These three temporal scales collectively influence 
the temporal variation characteristics of Asian NPP. The wavelet 

Table 3 
Different fluctuation degree of NPP defined by coefficient of 
variation.

CV NPP volatility

CV ≤ 0.1 Less fluctuation
0.1 < CV ≤ 0.2 Lower fluctuation
0.2 < CV ≤ 0.3 Moderate fluctuation
0.3 < CV ≤ 0.4 High fluctuation
CV > 0.4 Very high fluctuation

Table 4 
Future NPP variability characteristics categorized by trend analysis and Hurst 
exponent.

NPP Trend Hurst Persistence Future Change 
Trend

Significant 
Decrease

Decrease 0.5 < H 
< 1

Persistent Continual decrease

Extremely 
Significant 
Decrease

0 < H <
0.5

Anti- 
Persistent

Degradation to 
improvement

Extremely 
Significant 
Increase

Increase 0.5 < H 
< 1

Persistent Continual 
improvement

Significant 
Increase

0 < H <
0.5

Anti- 
Persistent

Improvement to 
degradation

No-Significant Change 0.5 < H 
< 1

Persistence No-Significant 
Change

0 < H <
0.5

Anti- 
Persistent

Stochastic 
variability
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principal component trend under the primary 28-year cycle (Fig. 5d) 
demonstrates that Asian NPP exhibits an about 20-year periodic varia
tion at this scale, undergoing two complete rise-and-fall transitions 
during the study period.

4.2. Spatiotemporal dynamics of Asian NPP

4.2.1. Spatial distribution patterns of Asian NPP
Spatial analysis reveals that Asian NPP exhibits a general distribution 

pattern of higher values in the southeast and lower values in the 
northwest (Fig. 6). The highest NPP values are observed in Southeast 
Asia, a region predominantly influenced by tropical rainforest and 

Fig. 2. Conceptual structural equation model for analyzing the driving factors of Asian NPP.

Fig. 3. Interannual and seasonal changes of NPP in Asian terrestrial ecosystems based on the anomaly index.

Fig. 4. MK-based analysis of NPP mutation points in Asian terrestrial ecosystems.
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monsoon climates characterized by high temperatures and abundant 
rainfall. This region is primarily characterized by tropical rainforests 
and subtropical evergreen broadleaved forests, supporting lush vegeta
tion and ranking among the most biodiverse regions globally. Relatively 
high NPP values are also found in southeastern East Asia and South Asia. 
Southeastern East Asia, governed by temperate and subtropical 
monsoon climates, experiences humid conditions with widespread 
subtropical evergreen broadleaved forests and temperate deciduous 
broadleaved forests. South Asia, primarily influenced by tropical 
monsoon climates, hosts diverse vegetation types, contributing to its 
elevated NPP levels. Notably, the needle-leaved forest region in central 
and southern North Asia also demonstrates relatively high NPP values. 
This area, characterized by a subarctic coniferous climate, features long, 
harsh winters and short, warm summers, yet maintains relatively high 
humidity levels, providing suitable conditions for needle-leaved forest 
growth. In contrast, Central Asia, Western Asia, and northwestern East 
Asia present a markedly different scenario. These regions are predomi
nantly controlled by tropical and subtropical desert climates, as well as 
temperate continental climates, experiencing cold winters, hot sum
mers, and scarce annual precipitation. Vegetation in these areas is pri
marily composed of grasslands and deserts, including the renowned 
Karakum Desert. Due to extremely low vegetation coverage and sparse 
distribution, these regions exhibit overall low NPP values.

4.2.2. Stability analysis of NPP in different areas of Asia

The CV serves as an effective quantitative indicator for character
izing the stability of NPP. In this research, the CV of Asian vegetation 
NPP from 1981 to 2018 is calculated and analyzed to reveal its temporal 
fluctuation characteristics (Fig. 7). The results indicate that 36 % of the 
Asian region exhibits low NPP variability. These areas primarily include 
subtropical evergreen broadleaved forests and tropical rainforests in 
Southeast Asia, temperate deciduous broadleaved forests and subtropi
cal evergreen broadleaved forests in eastern East Asia, subarctic conif
erous forests, tropical rainforests, tropical monsoon forests, and 
subtropical evergreen broadleaved forests in South Asia, as well as 
coniferous forests in central and southern North Asia. These forest 
ecosystems, due to their strong self-regulating capacity, demonstrate 
high adaptability to climate change, resulting in relatively low NPP 
variability. Conversely, 34 % of the Asian region shows high NPP vari
ability, predominantly concentrated in the desert areas of Central Asia 
and Western Asia (including peripheral desert regions), the grassland 
regions of northwestern East Asia, and the tundra zones of northern 
North Asia. The vegetation ecosystems in these regions possess relatively 
weaker self-regulating capabilities, making them more susceptible to 
climate change and consequently exhibiting higher NPP variability.

Overall, the degree of NPP variability across Asia displays significant 
regional differences. These variations are closely associated with the 
distribution of vegetation types and their self-regulating capacities, 
while also reflecting the varying impacts of climate change on distinct 

Fig. 5. Wavelet multiscale decomposition analysis of periodic NPP fluctuations in Asian terrestrial ecosystems (a. wavelet coefficient real contour graph; b. wavelet 
modulus square graph; c. wavelet variance graph; d. wavelet main cycle trend graph).
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ecological systems.

4.2.3. Analysis of NPP change trends in different areas of Asia

The trend of NPP changes across Asia from 1981 to 2018 is calculated 
at the pixel scale using a combination of slope analysis and F-signifi
cance testing (Fig. 8). The analysis shows that the majority of the Asian 
region (59 %) shows no significant change in NPP. Regions exhibiting 
upward NPP trends (12 %) are primarily distributed in the southeastern 
region of the Asian continent (including southeastern China, the Indian 
Peninsula, and parts of the Indochina Peninsula) and in Turkey in 
Western Asia. The increase in NPP in southeastern Asia can be attributed 
to sufficient precipitation driven by monsoon climates under global 
warming, as well as improved vegetation productivity due to ecological 
conservation projects and advancements in agricultural management. In 
Turkey, the relatively abundant precipitation compared to other West
ern Asian countries, influenced by Mediterranean and temperate mari
time climates, along with large-scale afforestation initiatives, has led to 
significant improvements in forest area and vegetation conditions.

Regions with significant NPP declines (29 %) include the Malay 
Archipelago in Southeast Asia, eastern Mongolia, northeastern Inner 
Mongolia in China, and the Irrawaddy River Basin in the Indochina 
Peninsula. The reduction in NPP in the Malay Archipelago is primarily 
caused by human activities such as agricultural expansion, urbanization, 
and logging, which have led to the destruction of primary forests. In 
eastern Mongolia and northeastern Inner Mongolia, despite being home 
to some of the world’s most intact natural grasslands, vegetation cover 
has fluctuated and shown degradation trends during the last three de
cades owing to climate change (rising temperatures and reduced pre
cipitation) and human activities such as mining and overgrazing. In the 
upstream section of the Irrawaddy River Basin, shifting cultivation 

practices by ethnic groups in northern Kachin have expanded forest 
clearings, transforming dense forests into shrublands or sparse wood
lands. In the midstream valley, overharvesting of valuable tree species 
has reduced the area of monsoon rainforests, while downstream delta 
regions have seen swamp forests replaced by farmland due to large-scale 
agricultural activities, resulting in severe vegetation degradation across 
the entire basin.

In summary, the trends in NPP changes across Asia exhibit significant 
regional heterogeneity. While NPP increases in southeastern Asia and 
parts of Western Asia are driven by favorable climatic conditions and 
ecological conservation measures, NPP declines in the Malay Archipel
ago, eastern Mongolia, northeastern Inner Mongolia, and the Irrawaddy 
River Basin are largely attributed to human activities, highlighting the 
urgent need for targeted ecological protection measures.

4.3. Asia NPP sustainability analysis

Hurst exponent analysis indicates that 92 % of Asia’s vegetated areas 
exhibit H < 0.5 (mean = 0.4), demonstrating anti-persistent character
istics in vegetation NPP time series (Fig. 9). This suggests potential 
future trend reversals in vegetation NPP (e.g., a shift from previous in
creases to future decreases). However, integrated trend analysis reveals 
that over 50 % of these areas currently show no statistically significant 
NPP changes. This implies that despite the anti-persistence pattern, most 
ecosystems have not yet developed definitive upward or downward NPP 
trends. Persistent areas (H > 0.5) constitute merely 8 % of the total study 
area, showing a fragmented distribution pattern, mainly concentrated in 
the fringes of the Thar Desert in South Asia and localised areas in 
Kalimantan in Southeast Asia.

Integrated analysis combining trend evaluation with Hurst exponent 
outcomes enables projection of future vegetation NPP trajectories across 

Fig. 6. Spatial distribution patterns of NPP in Asia terrestrial ecosystems from 1981 to 2018.
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Asia (Fig. 10). The synthesis reveals that 53 % of vegetated areas exhibit 
stochastic variability in NPP levels, while continual improvement per
sists in merely 2 % of territories—sparsely distributed across South 
Asian and southeastern East Asian croplands. Notably, degradation-to- 
improvement transitions are anticipated in 27 % of the study domain, 
predominantly concentrated in the Malay Archipelago, eastern 
Mongolia, northeastern Inner Mongolia (China), and the Irrawaddy 
River Basin. Approximately 12 % of the study area shows potential 
reversal of current growth trends, primarily concentrated in agricultural 
regions of South Asia and southeastern East Asia. This phenomenon may 
be attributed to systematic degradation (e.g., soil erosion and saliniza
tion) induced by prolonged agricultural intensification, which ulti
mately constrains vegetation productivity by reducing both soil fertility 
and water-use efficiency.

4.4. Analysis of driving mechanisms of Asian NPP

In this study, SEM is employed to evaluate the impacts of natural 
factors (temperature, precipitation, and topography) and human activ
ities (population, GDP, and economic structure) on Asian NPP. The 
model demonstrates good fit and reliability, with GFI, CFI, and IFI values 
of 0.773, 0.805, and 0.806, respectively, and an RMSEA value below 
0.228. As illustrated in Fig. 11, all factors except for the tertiary industry 
and aspect are found to significantly influence NPP, as their effects pass 
the significance test.

The results indicate that climate is the primary driving factor of 
vegetation NPP in Asian terrestrial ecosystems, with a total impact co
efficient of 0.38, reaching a highly significant level. Among climatic 
factors, mean temperature is the dominant contributor, with an impact 
coefficient of 0.98, followed by minimum temperature, maximum 
temperature, and precipitation, with influence of 0.91, 0.83, and 0.39, 

respectively. This suggests that although both temperature and precip
itation are critical factors influencing vegetation growth and develop
ment, temperature exerts a stronger regulatory effect on vegetation NPP 
within the study area (vegetated regions of Asia).

Human activities exhibit a relatively minor direct impact on NPP, 
with a total impact coefficient of 0.06. GDP is identified as the primary 
contributor (impact coefficient of 0.98), followed by population, pri
mary industry, and secondary industry, with influence coefficients of 
0.85, 0.62, and 0.37, respectively. This indicates that economic devel
opment primarily influences NPP through GDP, while population and 
industrial structure also play a role in shaping NPP variations.

Topographic factors influence NPP through both direct and indirect 
effects. The total direct impact coefficient of topography is − 0.14, with 
slope and elevation being the major contributors, having impact co
efficients of 0.72 and 0.64, respectively, while aspect does not pass the 
significance test. Additionally, topography indirectly affects NPP 
through its influence on human activities and climate, with impact co
efficients of approximately 0.40 and 0.04, respectively. Combining 
direct and indirect effects, the total impact coefficient of topography on 
NPP is approximately − 0.10. This suggests that topography has a direct 
negative impact on NPP, but this effect is partially offset by its indirect 
regulatory influence on human activities and climate.

In summary, climate exerts the strongest influence on Asian NPP 
variations (impact coefficient of 0.38), followed by topography (total 
impact coefficient of − 0.10), while human activities have the least 
impact (total impact coefficient of 0.06). These findings demonstrate 
that natural factors, particularly climatic conditions, play a dominant 
role in regulating vegetation NPP in Asian terrestrial ecosystems, 
whereas the effects of topography and human activities, though rela
tively smaller, remain significant.

Fig. 7. Analysis results of NPP fluctuation intensity in Asian terrestrial ecosystems based on coefficient of variation.
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5. Discussion

5.1. Characteristics of spatial and temporal changes in NPP in asia

From a temporal perspective, Asian NPP exhibits an overall fluctu
ating upward trend from 1981 to 2018, with a significant mutation point 
observed in 1998. Wavelet analysis reveals an approximately 20-year 
periodic variation at the 28-year time scale, during which Asian NPP 
undergoes two distinct rise-and-fall cycles. Notably, previous studies 
(Xu et al., 2017) have demonstrated that global precipitation exhibits a 
roughly 30-year periodic fluctuation affected by worldwide climatic 
patterns including the El Niño-Southern Oscillation (ENSO). In light of 
these findings, it is reasonable to hypothesize that the periodic varia
tions in Asian vegetation NPP are likely a direct reflection of cyclical 
climatic changes, particularly in precipitation. This discovery not only 
enhances the understanding of the mechanisms driving NPP variations 
in Asian ecosystems but also provides valuable insights for predicting 
future trends.

Spatial analysis reveals a dominant configuration of decreased NPP 
in the northwestern parts and increased NPP in the southeastern regions 
across Asia. Specifically, Southeast Asia, southeastern East Asia, and 
South Asia exhibit relatively high NPP values. These regions are pre
dominantly influenced by tropical rainforest, tropical monsoon, and 
temperate monsoon climates, fostering vegetation types such as tropical 
rainforests, subtropical evergreen broadleaved forests, and temperate 
deciduous broadleaved forests, as well as well-irrigated agricultural 
ecosystems. The dense and vigorous vegetation in these areas, coupled 
with relatively stable climatic conditions and abundant hydrothermal 
resources (Tian et al., 2025), contributes to their high NPP values and 
strong stability. In contrast, Central Asia, Western Asia, and north
western East Asia generally exhibit lower NPP values. These regions are 

characterized by drought-tolerant shrubs and low-growing herbaceous 
plants, with sparse vegetation coverage due to limited temperature and 
precipitation conditions, resulting in lower NPP values (Zhu et al., 
2025). Similarly, the tundra zones in northern North Asia display 
comparably low NPP characteristics. It is noteworthy that the vegetation 
ecosystems in these areas are functionally simplistic and have limited 
adaptability to extreme climatic events (Xue et al., 2020), leading not 
only to low absolute NPP values but also to significant interannual 
fluctuations and reduced ecosystem stability.

Trend analysis reveals significant regional differences in the NPP 
change trends across Asia from 1981 to 2018. In southeastern East Asia 
and South Asia, which are influenced by tropical and temperate mon
soons, abundant annual precipitation, combined with the promoting 
effects of global warming on vegetation growth, has led to notable in
creases in NPP in southeastern China and the Indian Peninsula. Partic
ularly noteworthy is the fact that NPP in most cultivated areas within 
these regions has reached a highly significant level of growth. This is 
likely attributable to continuous improvements in agricultural man
agement and water-fertilizer conditions, which have not only boosted 
crop yields but also significantly enhanced the productivity of farmland 
ecosystems (Wei et al., 2024). The combined effects of advanced man
agement practices and global warming have driven NPP increases in 
these areas to highly significant levels. These findings further validate 
Zeng Ning’s (Zeng et al., 2014) research on terrestrial carbon cycle 
patterns, indicating that Asian farmland ecosystems, particularly in 
China, have become important carbon sinks in recent years.

However, global warming is often accompanied by increased 
evapotranspiration. In regions lacking sufficient precipitation, ecosys
tems may become more vulnerable due to drought. In the grassland 
areas of eastern Mongolia and northeastern Inner Mongolia, China, 
vegetation productivity has declined significantly due to intensified 

Fig. 8. Historical trends of NPP changes in Asian terrestrial ecosystems from 1981 to 2018.
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drought caused by global climate change, together with human activ
ities including intensive grazing and mining practices. The most pro
nounced decline in NPP is observed in the Malay Archipelago of 
Southeast Asia. Despite abundant rainfall, further increases in global 
temperatures no longer promote vegetation growth in this tropical re
gion. Since the beginning of the 21st century, large-scale deforestation 
has been carried out across the islands to expand palm oil plantations 
and timber industries (Huang et al., 2023), causing a dramatic reduction 
in vegetation cover and a significant drop in carbon sequestration ca
pacity. Additionally, forest fires have become a major contributor to the 
reduction in vegetation cover in this region. For example, the 1983 
forest fires in Kalimantan and the 1997 Indonesian forest fires destroyed 
thousands of hectares of tropical rainforest (Hansen et al., 2019). These 
frequent natural disasters have further exacerbated the declining trend 
in NPP in the local tropical rainforests.

5.2. NPP sustainability characteristics in asia

Spatiotemporal analysis based on the Hurst exponent reveals marked 
regional heterogeneity in the sustainability of Asian vegetation NPP. 
Contrasting persistence patterns emerge between the Thar Desert pe
riphery in South Asia and localized sectors of Kalimantan Island in 
Southeast Asia, exhibiting persistent enhancement and degradation 
respectively. Specifically, intensive irrigation networks in the western 
Indus Plain sustain stable agroecosystems (Hasan and Fatima, 2025), 
while the eastern region demonstrates climate buffering capacity 
through the water-retention properties of black cotton soils (Tagore 
et al., 2014) combined with drought-tolerant vegetation adaptations. 
Conversely, extensive oil palm conversion replacing primary forests in 
Kalimantan (Botterill-James et al., 2024) has precipitated biodiversity 
loss and NPP persistence decline, given oil palm’s inferior productivity 

compared to native rainforests, highlighting the ecological conse
quences of monoculture land-use systems.

Projected trend analyses reveal that approximately half of Asia’s 
vegetated areas, primarily distributed across northeastern East Asia and 
northern Asia, exhibit stochastic variability in NPP. The stochastic 
variability is primarily attributed to intensified interannual fluctuations 
in summer monsoon precipitation in northeastern East Asia, which drive 
frequent switches between water-surplus and drought conditions. This 
leads to alternating resource constraints on vegetation growth (e.g., 
enhanced growth during wet years followed by carbon loss during 
subsequent hot-dry years), thereby inhibiting long-term trend formation 
(Guo et al., 2022). In northern Asia, the positive effect of climate 
warming-induced growing season extension is offset by negative im
pacts from permafrost thaw, including soil water loss and land subsi
dence, resulting in an alternating pattern of vegetation productivity 
responses.

Notably, regions including the Malay Archipelago, eastern Mongolia, 
and the Irrawaddy River Basin may exhibit improving NPP trends. This 
improvement primarily stems from integrated measures such as sus
tainable forestry management (Liu et al., 2024b), farmland-to-forest 
conversion programs (Chen et al., 2023b), and rare tree species con
servation policies (Kyaw et al., 2024). Through vegetation community 
reconstruction and ecosystem function restoration, these measures have 
effectively reversed previous NPP declines caused by human activities 
like agricultural expansion. These spatiotemporal patterns reveal the 
dual role of human intervention: intensive development triggers 
ecological degradation, while scientific governance can drive system 
recovery. The findings validate a regional-scale "stress-response-r
ecovery" coupled human-environment dynamic process, providing a 
replicable model for ecological restoration in developing countries.

Fig. 9. Hurst exponent analysis results of NPP in Asian terrestrial ecosystems.
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5.3. Drivers of NPP change in asia

Climate factors, such as temperature and precipitation, are generally 
recognized as the dominant determinants of vegetation NPP (Chen et al., 
2013). The analysis based on the SEM in this study also confirms that 
climatic factors play a predominant role among all driving factors, with 
an impact coefficient of 0.38, reaching a highly significant level. Among 

these factors, mean temperature exhibits the highest impact coefficient, 
followed by minimum temperature, maximum temperature, and 
precipitation.

Temperature is a critical factor controlling plant growing seasons, 
photosynthetic rates, and ecosystem productivity (Liu et al., 2024a). 
Given the significant climatic diversity across Asia, the influence of 
temperature on vegetation growth is particularly pronounced. In 

Fig. 10. Future sustainability analysis results of NPP in Asian terrestrial ecosystems.

Fig. 11. SEM of the relationship between Asia NPP change and its drivers (*** Significant at the 99 % level; ** 95 %; * 90 %. The indirect effect of topography on 
NPP through human activities is: 0.40×0.06 = 0.024;The indirect effect of topography on NPP through climate is: 0.04×0.38=0.0152;The total effect of topography 
on NPP is: − 0.14 + 0.024 + 0.0152 = − 0.1008).
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temperate and subarctic regions, temperature often limits the growing 
season and growth rates of plants. Therefore, temperature variations, 
especially winter minimum temperatures and summer maximum tem
peratures, can become key limiting factors for vegetation NPP. Notably, 
the impact coefficient of mean temperature is the highest among all 
climatic factors, suggesting that vegetation productivity in Asia may be 
significantly affected by global warming, particularly in high-latitude 
and mountainous regions.

Precipitation directly affects water availability for vegetation, 
thereby influencing photosynthesis and plant growth, and is undoubt
edly another key driver of vegetation NPP (Zhu et al., 2022). In arid and 
semi-arid regions such as Central Asia, Western Asia, and northwestern 
East Asia, scarce precipitation makes it difficult to sustain vegetation 
growth, resulting in vast desert and barren areas. However, this research 
emphasizes the effect of climatic factors on vegetation NPP and does not 
include these non-vegetated desert regions. In vegetated areas, the in
fluence of temperature on NPP is greater than that of precipitation, as 
evidenced by the distinct latitudinal zonation observed in the distribu
tion of Asian vegetation NPP (Fig. 6). In vegetated regions, the precip
itation distribution pattern in Asia is highly complex, with monsoon 
climates and arid zone precipitation variations exerting different effects 
on NPP across vegetation types. In humid regions such as tropical 
rainforests and subtropical monsoon climates, precipitation is generally 
not a limiting condition, whereas in moisture-deficient or semi-arid 
areas, insufficient precipitation can significantly constrain vegetation 
growth and NPP generation (Fensholt et al., 2012).

Topographic elements influence vegetation NPP through both direct 
and indirect pathways. The direct impact coefficient of topography on 
vegetation NPP is − 0.14, with elevation and slope making significant 
contributions. Typically, high-altitude regions are characterized by 
scarce precipitation, lower temperatures, thin soil layers, and poor soil 
fertility, all of which collectively limit vegetation growth (Feng et al., 
2025). Additionally, increased slope gradients exacerbate soil erosion, 
further reducing soil fertility and restricting vegetation growth, leading 
to decreased NPP (Qiu et al., 2025). Asia, the highest-elevation conti
nent after Antarctica, has mountains, plateaus, and hills covering 
approximately two-thirds of its land area, with about one-third of the 
region exceeding 1000 m in elevation. Consequently, elevation and 
slope significantly negatively impact Asian NPP (Chen et al., 2023a). 
However, elevation and slope also generate indirect effects by influ
encing human activities. For instance, in low-altitude and flat areas, 
higher population densities and frequent human activities result in 
greater disturbances to vegetation NPP, whereas in high-altitude and 
steep-slope regions, lower population densities and reduced human ac
tivities lead to fewer disturbances (Liu et al., 2015). Thus, this study 
reveals that topography partially offsets its negative impact on NPP by 
reducing human activities. This highlights the limitations of traditional 
correlation analysis in comprehensively assessing the influence of 
topography on NPP, while the SEM model more accurately uncovers the 
complex relationships among factors, providing more precise evaluation 
results.

Human activities exhibit dual effects on vegetation NPP (Dai et al., 
2023). On one hand, excessive land use, deforestation, overgrazing, and 
urbanization can destroy natural vegetation and reduce NPP. On the 
other hand, human activities such as agricultural cultivation and 
ecological engineering projects can also promote vegetation NPP (He 
et al., 2021). This study indicates that, among various factors, human 
activities have a relatively minor contribution to Asian vegetation NPP, 
with an impact coefficient of only 0.06. GDP contributes the most, fol
lowed by population, primary industry, and secondary industry, all 
showing positive correlations. This suggests that, although some regions 
in Asia (e.g., the Malay Archipelago in Southeast Asia) face destructive 
activities such as deforestation, overgrazing, and urbanization, human 
activities overall tend to have a positive impact on NPP. Countries across 
Asia, including China, have effectively enhanced vegetation coverage 
and productivity through improved agricultural management, 

sustainable development policies, and ecological projects (e.g., refor
estation, wetland restoration, and shelterbelt construction) (Li et al., 
2025). This finding aligns with the conclusions of Section 4.3.2 
regarding the trend analysis of Asian vegetation NPP, which shows a 
highly significant upward trend in NPP in most cultivated areas of East 
Asia, Southeast Asia, and South Asia. This further demonstrates that, 
despite the persistence of some destructive human activities in Asia, 
effective policy interventions and ecological restoration efforts have 
driven a positive trend in anthropogenic influences on NPP.

Although this study quantified the spatial differentiation mecha
nisms of NPP driven by the synergistic effects of multiple factors using 
SEM, the current model primarily elucidates driving relationships in the 
spatial dimension, without incorporating time series information or 
potential lag effects. This design choice leverages SEM’s strength in 
testing predefined causal pathways rather than capturing temporal de
pendencies (Grace et al., 2016). Moreover, the study period encom
passes the 28-year principal cycle of Asian NPP (Section 4.1), capturing 
its long-term dynamic characteristics. Nevertheless, we recognize that 
vegetation productivity may exhibit short-term memory effects, such as 
the lasting impacts of drought stress. Future research will integrate both 
spatial and temporal information to more comprehensively reveal the 
spatiotemporal regulatory mechanisms of carbon sink functions in Asian 
ecosystems.

6. Conclusions

Employing long-term NPP datasets, this study analyzes the spatio
temporal variations and driving mechanisms of NPP in Asian vegetation 
from 1981 to 2018, yielding the following key conclusions: 

(1) Throughout the research period, Asian vegetation NPP exhibits a 
fluctuating increasing trend, accompanied by consistent seasonal 
variation patterns. A mutation point is identified around 1998 in 
the interannual variation. Wavelet analysis reveals that Asian 
NPP demonstrates an approximately 20-year periodic fluctuation 
at a 28-year time scale, undergoing two distinct rise-and-fall 
transitions.

(2) Spatial analysis indicates that Asian terrestrial ecosystems display 
a spatial pattern of lower NPP in the northwest and higher NPP in 
the southeast. High NPP values are primarily observed in 
Southeast Asia, southeastern East Asia, and South Asia, with these 
regions exhibiting strong stability. In contrast, Central Asia, 
Western Asia, and northwestern East Asia generally show lower 
NPP values with greater variability.

(3) Trend and sustainability analyses reveal significant regional dif
ferences in NPP changes across Asia. Around 60 % of regions 
show no significant change, while eastern East Asia and South 
Asia exhibit NPP growth due to global warming, agricultural 
development, and ecological projects. In contrast, tropical rain
forests in Southeast Asia and grasslands in eastern Mongolia 
experience declines due to natural disasters, deforestation, and 
overgrazing. Future projections suggest potential NPP declines in 
South Asia and southeastern East Asia’s agricultural areas from 
long-term intensification, while regions like the Malay Archi
pelago, eastern Mongolia, northeastern Inner Mongolia, and the 
Irrawaddy River Basin may see positive shifts due to effective 
policies and restoration projects.

(4) SEM identifies natural factors as the dominant drivers of Asian 
NPP changes, with climatic factors—particularly temperature 
and precipitation—being the key contributors, exhibiting an 
impact coefficient of 0.38. The total influence coefficient of 
topographic factors on NPP is determined to be − 0.10, 
comprising a direct effect of − 0.14 and an indirect effect of 0.04 
mediated through climate and human activities. This indirect 
effect is found to partially mitigate the negative impact of 
topography on NPP. Human activities have a relatively minor 
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influence on NPP, with contribution coefficients of 0.06, pri
marily driven by GDP and population density.
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