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ABSTRACT

Net Primary Productivity (NPP) serves as a critical indicator for assessing terrestrial ecosystem quality and
characterizing carbon sequestration capacity. Utilizing a long-term NPP remote sensing inversion dataset, this
study systematically uncovers the spatiotemporal evolution patterns of vegetation NPP in Asia through historical
trend analysis, identification of mutation nodes, ecological stability assessment, multi-scale periodic feature
analysis, and sustainability forecasting. The combined driving effects of topographical constraints, climate
variability, and human activities are quantitatively examined using structural equation modeling (SEM), eluci-
dating the multifactorial synergistic impact on vegetation productivity. The main findings are: (1) Temporally,
Asian vegetation NPP exhibits a fluctuating upward trend with a principal cycle of approximately 20 years,
marked by two distinct rise-decline transitions during the study period. (2) Spatially, a clear southeast-high/
northwest-low differentiation pattern is observed, with significant NPP increases in East Asian monsoon re-
gions and South Asian agricultural zones, contrasted by declines in tropical rainforests (notably in the Malay
Archipelago) and eastern Mongolian grasslands. (3) Persistence analysis indicates that 53 % of vegetated areas
exhibit random NPP variability, 4 % maintain stable conditions, and only 2 % (mainly in South and East Asian
croplands) show sustained growth potential. A trend reversal from negative to positive is noted in 27 % of the
regions (e.g., Malay Archipelago and eastern Mongolia), while 12 % of cropland-dominant areas may face growth
stagnation or decline. (4) Driver quantification demonstrates climate factors exert the strongest explanatory
power (total effect: 0.38), while topography generates complex influences through direct negative (-0.14) and
indirect positive (0.04) effects. Human activities (total effect: 0.06) are primarily driven by synergistic GDP-
population growth. These findings provide a scientific foundation for evaluating Asian ecosystem services and
guiding regional carbon cycle management under global change scenarios.

1. Introduction

Net Primary Productivity (NPP), a core parameter quantifying

change feedback mechanisms (Yu, 2020). The Asian continent harbors
the world’s most extensive terrestrial ecosystems (accounting for 29.4 %
of the global land area) and experiences the most intense

photosynthetic carbon fixation capacity and energy flow in terrestrial
ecosystems, is operationally defined as the difference between carbon
assimilated through photosynthesis and carbon loss via autotrophic
respiration (Field et al., 1998; Li et al., 2021). Recognized as a critical
proxy for ecosystem productivity, NPP plays a pivotal role in global
carbon equilibrium and climate regulation (Piao et al., 2005; Wang
et al., 2023a). This metric serves not only as a fundamental criterion for
assessing ecosystem health and sustainability but also as the cornerstone
for modeling global carbon cycle dynamics and investigating climate

human-induced pressures (supporting 59.3 % of the global population).
The spatiotemporal dynamics of its NPP are therefore critical in regu-
lating the global carbon budget. The continent’s complex topographic
gradients, climatic diversity, and intensive human-environment in-
teractions collectively drive highly heterogeneous and nNar NPP dy-
namics (Chen et al., 2025). Consequently, comprehensive analysis of
Asian NPP’s spatiotemporal dynamics and multidimensional drivers
becomes critically imperative for advancing mechanistic understanding
of carbon cycling processes spanning regional to global scales,
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enhancing quantitative assessments of ecosystem service functionalities,
and supporting data-driven strategies for sustainable development.

To elucidate the interannual variation patterns of NPP, we calculated
annual mean NPP using the dataset detailed in Section 2.2.1. Initially,
the Maximum Value Composite (MVC) was applied to create monthly
NPP, which effectively mitigated the influence of environmental noise
like cloud cover and atmospheric disturbances. Subsequently, the
annual mean NPP was obtained by averaging the monthly NPP values,
and its interannual dynamic characteristics on a continental scale were
analyzed.

In recent years, the integration of multi-source data with vegetation
productivity estimation models has provided solutions for constructing
long-term NPP datasets (Liang et al., 2015, 2023; Qiu et al., 2023).
Based on this, the interannual variability and trend inflection points of
NPP have been preliminarily identified through anomaly indices and
Mann-Kendall mutation tests (Wang et al., 2023b). However, the
multi-scale periodic oscillations of NPP remain insufficiently investi-
gated. Notably, wavelet analysis, distinguished by its time-frequency
localization capabilities, effectively captures cyclical patterns, abrupt
shifts, and phase transitions in temporal sequences (Arjasakusuma et al.,
2025). This study applies this technique to Asian NPP time-series anal-
ysis, specifically investigating 20-30-year scale climate oscillation
response mechanisms.

Spatially, existing research predominantly focuses on static NPP
distribution patterns, while the analysis of spatiotemporal co-
evolutionary patterns and sustainability characteristics remains meth-
odologically constrained. Although coefficient of variation (CV) and
linear regression trend analyses partially characterize spatial heteroge-
neity (Liang et al., 2022; Zhou et al., 2025), they inadequately quantify
long-term dependency in vegetation dynamics. The Hurst exponent, as a
fundamental parameter in fractal theory, can effectively diagnose trend
persistence (H > 0.5) or anti-persistence (H < 0.5) in time series through
rescaled range analysis (R/S) (Emamian et al., 2021; Huang et al., 2023),
which provides a suitable mathematical tool for predicting the future
evolutionary path of NPP. This study proposes to establish a
three-dimensional analytical framework of "fluctuation intensity—trend
direction—sustainability," integrating the coefficient of variation (CV),
univariate linear regression trend analysis, and the Hurst exponent. The
framework aims to extract orderly spatiotemporal evolution patterns of
NPP from complex vegetation dynamics in Asia, thereby providing a
scientific basis for a deeper understanding of ecosystem variability
across different regions of the continent.

The driving mechanisms underlying Asian terrestrial NPP dynamics
remain incompletely characterized at continental scales. While existing
studies have established that multifactorial drivers, including climatic
parameters (temperature, precipitation) and anthropogenic distur-
bances (land-use changes, agricultural practices, urbanization), collec-
tively influence NPP variations (Gu et al., 2022; Sha et al., 2022; Xue
et al., 2023). Nevertheless, existing research predominantly targets
localized representative areas with temporally constrained short-cycle
observations, failing to deliver an integrated assessment of
continent-scale long-term NPP dynamics trajectories. Furthermore,
while some studies have attempted to elucidate the driving mechanisms
of climate and anthropogenic factors on NPP variations, their reliance
on linear statistical models limits their ability to capture nonlinear
synergistic effects among drivers (e.g., interactions between topography
and human activities) or identify latent mediating pathways (e.g., in-
direct climatic effects modulated by topography). Structural equation
modeling (SEM) is a multivariate statistical technique that differs from
conventional approaches such as correlation or regression analysis by
simultaneously examining complex relationships among multiple
dependent and independent variables, while also revealing mediation
effects that are often overlooked by linear models (Li et al., 2023; Quan
etal., 2023). This allows for the explicit quantification of both direct and
indirect effects of climatic factors (e.g., temperature, precipitation) and
human activities (e.g., population size, economic output, industrial
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structure) on NPP variations. Therefore, this study analyses the driving
mechanisms of NPP changes by factors such as climate and human ac-
tivities through SEM models, quantifies the relative contributions of
each driver, and reveals their interactions, in order to provide more
comprehensive and systematic references for scientists and policy
makers.

This study addresses these gaps through an integrated analytical
framework: (1) Multiscale temporal variability analysis using anomaly
indices and wavelet decomposition; (2) Spatiotemporal pattern identi-
fication via coefficient of variation (CV) and linear trend analysis; (3)
Persistence characterization with Hurst exponent evaluation; (4)
Mechanistic driver quantification through SEM implementation. The
research results will provide scientific basis for adaptive management
and optimisation of carbon neutral pathways in Asian ecosystems.

2. Study area and data
2.1. Study area

Asia (10°S-80°N, 25°E-170°W), the largest and most topographically
complex continent on Earth, encompasses diverse geomorphological
features. The region is predominantly characterized by plateaus and
mountain ranges, with the Tibetan Plateau, renowned as the "Roof of the
World", radiating numerous mountain chains and plains, creating a
distinctive "high center with surrounding lowlands" topographic
pattern. Climatically, Asia exhibits remarkable diversity, ranging from
frigid to temperate and tropical zones, with particularly prominent
monsoon systems (Krishnan et al., 2025) that significantly influence
global hydrological cycles. The region supports diverse vegetation types,
from tropical rainforests to boreal coniferous forests, forming rich eco-
systems (Fig. 1). As a crucial carbon sink and heat source under the
circumstances of global climate change, Asia’s response and feedback
mechanisms to climatic variations exert substantial influence on the
global climate system. These distinctive characteristics make Asia’s
terrestrial ecosystems particularly valuable for scientific investigation of
NPP and its driving factors, with significant practical implications.

2.2. Research data

To analyze the spatiotemporal variations of NPP and their driving
mechanisms in Asian terrestrial ecosystems, multiple datasets are uti-
lized in this study, including NPP data (5 km resolution), land cover data
(30 m resolution), human activity data (statistical data), topographic
data (30 m resolution), and climate data (11 km resolution). The sources
and descriptions of these datasets are presented in Table 1. For the
analysis of driving factors, all datasets undergo resampling to a consis-
tent 5 km resolution, maintaining spatial uniformity and enabling
comparative analysis.

3. Research method
3.1. Trend analysis methods

In this study, the trend analysis of NPP variations across Asia is
conducted using a combined approach of univariate linear regression
analysis and F-significance testing. The slope of the regression equation
is employed to represent the trend of vegetation NPP changes at each
grid point over the study period (Liang et al., 2022). The calculation
formula is presented as follows:

nx >, (ix Var) =Y ix Y, Var;
. A2
nx Y- (Z?:ll)
In the equation, n represents the number of years in the study period,

and Var; denotes the change value for the i year. The slope of the trend
line is represented by Slope, where a positive value (Slope > 0) indicates

Slope = (€]
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Fig. 1. Study area (with the background of remote sensing classification of vegetation types).
Table 1 Table 2
Types and sources of research data. Slope classification standard.
Data type Data name Data source and description Slope Level
Basic NPP dataset GLASS Dataset from National Slope < —8.531 Extremely significant reduction
dataset Earth System Science Data Center —8.531 < Slope < —4.494 Significant reduction
(http://www.geodata.cn) —4.494 < Slope < 4.494 No-significant change
Land cover data ESA GlobCover Land Cover Data 4.494 < Slope < 8.531 Significant increase
(https://www.gscloud.cn/) Slope > 8.531 Extremely significant increase
Driving Human activity data (GDP, World Bank Population Resources
factor population, industrial and Industrial Structure Dataset
dataset structure) (https://data.worldbank.org) revealing the time-frequency characteristics of signals. The two primary

Topographic data (elevation,
slope, aspect)

Climatic data (cumulative
precipitation, mean
temperature, maximum and
minimum temperatures)

Derived from ETOPO Global
Relief Model and DEM Dataset,
NOAA National Centers for
Environmental Information (https
://www.ncei.noaa.gov/products)
Climate Dataset from National
Earth System Science Data Center
(https://www.geodata.cn/ma
in/)

an increasing trend in vegetation NPP over the n year study period,
while a negative value (Slope < 0) signifies a decreasing trend.

Based on the F-significance testing critical value table, the critical
values are determined as 8.531 for the 0.01 significance level and 4.494
for the 0.05 significance level. Consequently, the NPP slope values are
classified into six distinct categories (Table 2).

3.2. Wavelet analysis

Wavelet analysis enables the decomposition of signals into sums of
wavelet functions with different frequencies and positions, thereby

variables in wavelet transformation are scale (inversely proportional to
frequency) and translation (related to time), allowing wavelet analysis
to simultaneously capture signal variations in both time and frequency
domains. This multi-resolution analysis facilitates the observation of
periodic characteristics in signals. Among various wavelet functions, the
Morlet wavelet is particularly widely applied in periodic analysis due to
its excellent time-frequency localization properties. Therefore, this
study employs Morlet wavelet transformation to analyze the periodic
variations and temporal patterns of Asian NPP from 1981 to 2018. The
continuous Morlet wavelet is defined as (Ghaderpour et al., 2023):

1. 2
@(t) =n4e™e 2 @
The Morlet wavelet is derived from the product of a complex sinusoid

i . 2 . .
e ™ofand a Gaussian envelope e” 2, wheregp(t)represents dimensionless

1 .
time,wpdenotes dimensionless frequency, andz 4serves as a normaliza-
tion factor ensuring unit variance (Lara et al., 2018).
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3.3. Volatility analysis

As a standardized measure of relative variability, the CV serves as an
indicator of temporal stability, where higher values signify greater NPP
variability and increased system instability over time, while lower
values indicate relative stability (Lu et al., 2023). The CV is calculated by
normalizing the standard deviation against the mean, thereby elimi-
nating dimensional effects and enabling cross-dataset comparisons,
particularly suitable for analyzing NPP across different ranges. The
calculation formula is expressed as (Dong et al., 2024):

Ve stdev
NPP

3

4

In the equation, stdev represents the standard deviation of NPP, and
NPPdenotes the mean NPP over the study period.

To facilitate a more intuitive interpretation of NPP variability, the CV
values are categorized into five distinct levels (Table 3) (Chen et al.,
2022).

3.4. Sustainability analysis based on the Hurst index

The Hurst exponent, originating from hydrological time series
analysis, quantifies long-range dependence in sequential data through
Rescaled Range Analysis (R/S). This method enables robust identifica-
tion of stochastic walk characteristics and persistence deviations in
temporal patterns, and has become an essential tool for investigating
sustainability attributes in ecological processes (Jiang et al., 2017). This
study adapts the Hurst framework to assess persistence characteristics in
vegetation NPP dynamics, with the core computational formula
expressed as:

In (g) — Hln(m) +C ©)

In the equation, R denotes the subsequence extreme deviation (dif-
ference between maximum and minimum values), S represents the
subsequence standard deviation, m indicates the sub-interval length, H
corresponds to the Hurst exponent, and C signifies a constant.

The integrated application of the Hurst exponent with trend analysis
elucidates fundamental patterns in NPP dynamics: when He(0.5,1), the
series is persistent (H—1 persistence is enhanced) and the future trend is
in the same direction as history; H = 0.5 is a random wandering; and He
(0,0.5) exhibits an anti-sustainability, with the future trend inverted
from history (Table 4).

3.5. Structural equation modelling

For the analysis of NPP driving factors, we employed the SEM
approach. Inspired by previous research (Sha et al., 2022), the driving
factors of NPP are categorized into three groups: topographic factors,
climatic factors, and human activities, which are considered as unob-
served variables within the SEM structure. A conceptual model is

Table 3
Different fluctuation degree of NPP defined by coefficient of
variation.
(9% NPP volatility
Cv<o.l Less fluctuation
0.1 <CV<0.2 Lower fluctuation
02<CV<03 Moderate fluctuation
0.3<Cv<04 High fluctuation
CV > 0.4 Very high fluctuation

Ecological Modelling 510 (2025) 111322

Table 4
Future NPP variability characteristics categorized by trend analysis and Hurst
exponent.

NPP Trend Hurst Persistence Future Change
Trend

Significant Decrease 0.5 <H  Persistent Continual decrease
Decrease <1

Extremely 0<H< Anti- Degradation to
Significant 0.5 Persistent improvement
Decrease

Extremely Increase 0.5<H  Persistent Continual
Significant <1 improvement
Increase

Significant 0<H<  Anti- Improvement to

Increase 0.5 Persistent degradation
No-Significant Change 0.5<H  Persistence No-Significant
<1 Change
0<H< Anti- Stochastic
0.5 Persistent variability

constructed accordingly (Fig. 2). Specifically, the observed variables for
topographic factors include slope, aspect, and elevation; for climatic
factors, maximum temperature, minimum temperature, mean temper-
ature, and precipitation are considered; and for human activities, GDP,
population, primary industry, secondary industry, and tertiary industry
are included as observed variables.

The SEM model was assessed using four standard fit indices: the
Goodness of Fit Index (GFI), the Comparative Fit Index (CFI), the In-
cremental Fit Index (IFI), and the Root Mean Square Error of Approxi-
mation (RMSEA). When the values of the first three indices are close to 1
and the RMSEA is near 0, the model is deemed robust and effective. After
confirming a satisfactory model fit, we examined the standardized path
coefficients to evaluate how different driving factors influence vegeta-
tion NPP. This yield estimates of each driving factor’s direct and indirect
contributions, illustrating how these factors interact to jointly influence
NPP across Asian ecosystems.

4. Results and analysis
4.1. Interannual variation characteristics of Asian NPP

The annual variability of NPP across the Asian continent from 1981
to 2018 exhibits a fluctuating ascending pattern (Fig. 3). The temporal
variation curve of Asian NPP can be divided into three distinct phases,
with 1989 and 2000 as the boundaries. During the period 1981-1989,
NPP shows significant fluctuations, particularly with a notable decline
from 1986 to 1989, reaching a trough in 1989. This decline is likely
associated with the strong La Nina phenomenon and the global cooling
event during 1988-1989. From 1989 to 2000, NPP demonstrates a
steady increasing trend, peaking in 2000. After 2001, NPP remains
relatively stable, with a slight decline observed in 2008, which may be
attributed to widespread precipitation and temperature anomalies in
Asia caused by the La Nina phenomenon during that period. The MK
mutation analysis that the UB and UF curves of Asian NPP intersect
within the confidence interval, identifying 1998 as the only mutation
point. The UF curve exceeds the 0.05 significance level (Fig. 4), indi-
cating a significant mutation in the NPP time series around 1998.

The Morlet wavelet analysis is applied to the time series data of Asian
NPP, with the results presented in Fig. 5. During the period 1981-2018,
three distinct high-value centers (1981, 2002, and 2018) and two low-
value centers (1989 and 2010) are identified (Fig. 5a). Additionally, a
strong oscillation cycle is observed at the 20-35 year time scale
(Fig. 5b). The analysis reveals periodic fluctuations of 28 years, 16 years,
and 5 years, with the 28-year cycle being the primary period, while the
16-year and 5-year cycles represent the secondary and tertiary periods,
respectively (Fig. 5¢). These three temporal scales collectively influence
the temporal variation characteristics of Asian NPP. The wavelet
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principal component trend under the primary 28-year cycle (Fig. 5d) 4.2. Spatiotemporal dynamics of Asian NPP

demonstrates that Asian

NPP exhibits an about 20-year periodic varia-

tion at this scale, undergoing two complete rise-and-fall transitions 4.2.1. Spatial distribution patterns of Asian NPP

during the study period.

Spatial analysis reveals that Asian NPP exhibits a general distribution
pattern of higher values in the southeast and lower values in the
northwest (Fig. 6). The highest NPP values are observed in Southeast
Asia, a region predominantly influenced by tropical rainforest and
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Fig. 5. Wavelet multiscale decomposition analysis of periodic NPP fluctuations in Asian terrestrial ecosystems (a. wavelet coefficient real contour graph; b. wavelet
modulus square graph; c. wavelet variance graph; d. wavelet main cycle trend graph).

monsoon climates characterized by high temperatures and abundant
rainfall. This region is primarily characterized by tropical rainforests
and subtropical evergreen broadleaved forests, supporting lush vegeta-
tion and ranking among the most biodiverse regions globally. Relatively
high NPP values are also found in southeastern East Asia and South Asia.
Southeastern East Asia, governed by temperate and subtropical
monsoon climates, experiences humid conditions with widespread
subtropical evergreen broadleaved forests and temperate deciduous
broadleaved forests. South Asia, primarily influenced by tropical
monsoon climates, hosts diverse vegetation types, contributing to its
elevated NPP levels. Notably, the needle-leaved forest region in central
and southern North Asia also demonstrates relatively high NPP values.
This area, characterized by a subarctic coniferous climate, features long,
harsh winters and short, warm summers, yet maintains relatively high
humidity levels, providing suitable conditions for needle-leaved forest
growth. In contrast, Central Asia, Western Asia, and northwestern East
Asia present a markedly different scenario. These regions are predomi-
nantly controlled by tropical and subtropical desert climates, as well as
temperate continental climates, experiencing cold winters, hot sum-
mers, and scarce annual precipitation. Vegetation in these areas is pri-
marily composed of grasslands and deserts, including the renowned
Karakum Desert. Due to extremely low vegetation coverage and sparse
distribution, these regions exhibit overall low NPP values.

4.2.2. Stability analysis of NPP in different areas of Asia

The CV serves as an effective quantitative indicator for character-
izing the stability of NPP. In this research, the CV of Asian vegetation
NPP from 1981 to 2018 is calculated and analyzed to reveal its temporal
fluctuation characteristics (Fig. 7). The results indicate that 36 % of the
Asian region exhibits low NPP variability. These areas primarily include
subtropical evergreen broadleaved forests and tropical rainforests in
Southeast Asia, temperate deciduous broadleaved forests and subtropi-
cal evergreen broadleaved forests in eastern East Asia, subarctic conif-
erous forests, tropical rainforests, tropical monsoon forests, and
subtropical evergreen broadleaved forests in South Asia, as well as
coniferous forests in central and southern North Asia. These forest
ecosystems, due to their strong self-regulating capacity, demonstrate
high adaptability to climate change, resulting in relatively low NPP
variability. Conversely, 34 % of the Asian region shows high NPP vari-
ability, predominantly concentrated in the desert areas of Central Asia
and Western Asia (including peripheral desert regions), the grassland
regions of northwestern East Asia, and the tundra zones of northern
North Asia. The vegetation ecosystems in these regions possess relatively
weaker self-regulating capabilities, making them more susceptible to
climate change and consequently exhibiting higher NPP variability.

Overall, the degree of NPP variability across Asia displays significant
regional differences. These variations are closely associated with the
distribution of vegetation types and their self-regulating capacities,
while also reflecting the varying impacts of climate change on distinct
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Fig. 6. Spatial distribution patterns of NPP in Asia terrestrial ecosystems from 1981 to 2018.

ecological systems.

4.2.3. Analysis of NPP change trends in different areas of Asia

The trend of NPP changes across Asia from 1981 to 2018 is calculated
at the pixel scale using a combination of slope analysis and F-signifi-
cance testing (Fig. 8). The analysis shows that the majority of the Asian
region (59 %) shows no significant change in NPP. Regions exhibiting
upward NPP trends (12 %) are primarily distributed in the southeastern
region of the Asian continent (including southeastern China, the Indian
Peninsula, and parts of the Indochina Peninsula) and in Turkey in
Western Asia. The increase in NPP in southeastern Asia can be attributed
to sufficient precipitation driven by monsoon climates under global
warming, as well as improved vegetation productivity due to ecological
conservation projects and advancements in agricultural management. In
Turkey, the relatively abundant precipitation compared to other West-
ern Asian countries, influenced by Mediterranean and temperate mari-
time climates, along with large-scale afforestation initiatives, has led to
significant improvements in forest area and vegetation conditions.

Regions with significant NPP declines (29 %) include the Malay
Archipelago in Southeast Asia, eastern Mongolia, northeastern Inner
Mongolia in China, and the Irrawaddy River Basin in the Indochina
Peninsula. The reduction in NPP in the Malay Archipelago is primarily
caused by human activities such as agricultural expansion, urbanization,
and logging, which have led to the destruction of primary forests. In
eastern Mongolia and northeastern Inner Mongolia, despite being home
to some of the world’s most intact natural grasslands, vegetation cover
has fluctuated and shown degradation trends during the last three de-
cades owing to climate change (rising temperatures and reduced pre-
cipitation) and human activities such as mining and overgrazing. In the
upstream section of the Irrawaddy River Basin, shifting cultivation

practices by ethnic groups in northern Kachin have expanded forest
clearings, transforming dense forests into shrublands or sparse wood-
lands. In the midstream valley, overharvesting of valuable tree species
has reduced the area of monsoon rainforests, while downstream delta
regions have seen swamp forests replaced by farmland due to large-scale
agricultural activities, resulting in severe vegetation degradation across
the entire basin.

In summary, the trends in NPP changes across Asia exhibit significant
regional heterogeneity. While NPP increases in southeastern Asia and
parts of Western Asia are driven by favorable climatic conditions and
ecological conservation measures, NPP declines in the Malay Archipel-
ago, eastern Mongolia, northeastern Inner Mongolia, and the Irrawaddy
River Basin are largely attributed to human activities, highlighting the
urgent need for targeted ecological protection measures.

4.3. Asia NPP sustainability analysis

Hurst exponent analysis indicates that 92 % of Asia’s vegetated areas
exhibit H < 0.5 (mean = 0.4), demonstrating anti-persistent character-
istics in vegetation NPP time series (Fig. 9). This suggests potential
future trend reversals in vegetation NPP (e.g., a shift from previous in-
creases to future decreases). However, integrated trend analysis reveals
that over 50 % of these areas currently show no statistically significant
NPP changes. This implies that despite the anti-persistence pattern, most
ecosystems have not yet developed definitive upward or downward NPP
trends. Persistent areas (H > 0.5) constitute merely 8 % of the total study
area, showing a fragmented distribution pattern, mainly concentrated in
the fringes of the Thar Desert in South Asia and localised areas in
Kalimantan in Southeast Asia.

Integrated analysis combining trend evaluation with Hurst exponent
outcomes enables projection of future vegetation NPP trajectories across
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Fig. 7. Analysis results of NPP fluctuation intensity in Asian terrestrial ecosystems based on coefficient of variation.

Asia (Fig. 10). The synthesis reveals that 53 % of vegetated areas exhibit
stochastic variability in NPP levels, while continual improvement per-
sists in merely 2 % of territories—sparsely distributed across South
Asian and southeastern East Asian croplands. Notably, degradation-to-
improvement transitions are anticipated in 27 % of the study domain,
predominantly concentrated in the Malay Archipelago, eastern
Mongolia, northeastern Inner Mongolia (China), and the Irrawaddy
River Basin. Approximately 12 % of the study area shows potential
reversal of current growth trends, primarily concentrated in agricultural
regions of South Asia and southeastern East Asia. This phenomenon may
be attributed to systematic degradation (e.g., soil erosion and saliniza-
tion) induced by prolonged agricultural intensification, which ulti-
mately constrains vegetation productivity by reducing both soil fertility
and water-use efficiency.

4.4. Analysis of driving mechanisms of Asian NPP

In this study, SEM is employed to evaluate the impacts of natural
factors (temperature, precipitation, and topography) and human activ-
ities (population, GDP, and economic structure) on Asian NPP. The
model demonstrates good fit and reliability, with GFI, CFI, and IFI values
of 0.773, 0.805, and 0.806, respectively, and an RMSEA value below
0.228. Asillustrated in Fig. 11, all factors except for the tertiary industry
and aspect are found to significantly influence NPP, as their effects pass
the significance test.

The results indicate that climate is the primary driving factor of
vegetation NPP in Asian terrestrial ecosystems, with a total impact co-
efficient of 0.38, reaching a highly significant level. Among climatic
factors, mean temperature is the dominant contributor, with an impact
coefficient of 0.98, followed by minimum temperature, maximum
temperature, and precipitation, with influence of 0.91, 0.83, and 0.39,

respectively. This suggests that although both temperature and precip-
itation are critical factors influencing vegetation growth and develop-
ment, temperature exerts a stronger regulatory effect on vegetation NPP
within the study area (vegetated regions of Asia).

Human activities exhibit a relatively minor direct impact on NPP,
with a total impact coefficient of 0.06. GDP is identified as the primary
contributor (impact coefficient of 0.98), followed by population, pri-
mary industry, and secondary industry, with influence coefficients of
0.85, 0.62, and 0.37, respectively. This indicates that economic devel-
opment primarily influences NPP through GDP, while population and
industrial structure also play a role in shaping NPP variations.

Topographic factors influence NPP through both direct and indirect
effects. The total direct impact coefficient of topography is —0.14, with
slope and elevation being the major contributors, having impact co-
efficients of 0.72 and 0.64, respectively, while aspect does not pass the
significance test. Additionally, topography indirectly affects NPP
through its influence on human activities and climate, with impact co-
efficients of approximately 0.40 and 0.04, respectively. Combining
direct and indirect effects, the total impact coefficient of topography on
NPP is approximately —0.10. This suggests that topography has a direct
negative impact on NPP, but this effect is partially offset by its indirect
regulatory influence on human activities and climate.

In summary, climate exerts the strongest influence on Asian NPP
variations (impact coefficient of 0.38), followed by topography (total
impact coefficient of —0.10), while human activities have the least
impact (total impact coefficient of 0.06). These findings demonstrate
that natural factors, particularly climatic conditions, play a dominant
role in regulating vegetation NPP in Asian terrestrial ecosystems,
whereas the effects of topography and human activities, though rela-
tively smaller, remain significant.
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Fig. 8. Historical trends of NPP changes in Asian terrestrial ecosystems from 1981 to 2018.

5. Discussion
5.1. Characteristics of spatial and temporal changes in NPP in asia

From a temporal perspective, Asian NPP exhibits an overall fluctu-
ating upward trend from 1981 to 2018, with a significant mutation point
observed in 1998. Wavelet analysis reveals an approximately 20-year
periodic variation at the 28-year time scale, during which Asian NPP
undergoes two distinct rise-and-fall cycles. Notably, previous studies
(Xu et al., 2017) have demonstrated that global precipitation exhibits a
roughly 30-year periodic fluctuation affected by worldwide climatic
patterns including the El Nino-Southern Oscillation (ENSO). In light of
these findings, it is reasonable to hypothesize that the periodic varia-
tions in Asian vegetation NPP are likely a direct reflection of cyclical
climatic changes, particularly in precipitation. This discovery not only
enhances the understanding of the mechanisms driving NPP variations
in Asian ecosystems but also provides valuable insights for predicting
future trends.

Spatial analysis reveals a dominant configuration of decreased NPP
in the northwestern parts and increased NPP in the southeastern regions
across Asia. Specifically, Southeast Asia, southeastern East Asia, and
South Asia exhibit relatively high NPP values. These regions are pre-
dominantly influenced by tropical rainforest, tropical monsoon, and
temperate monsoon climates, fostering vegetation types such as tropical
rainforests, subtropical evergreen broadleaved forests, and temperate
deciduous broadleaved forests, as well as well-irrigated agricultural
ecosystems. The dense and vigorous vegetation in these areas, coupled
with relatively stable climatic conditions and abundant hydrothermal
resources (Tian et al., 2025), contributes to their high NPP values and
strong stability. In contrast, Central Asia, Western Asia, and north-
western East Asia generally exhibit lower NPP values. These regions are

characterized by drought-tolerant shrubs and low-growing herbaceous
plants, with sparse vegetation coverage due to limited temperature and
precipitation conditions, resulting in lower NPP values (Zhu et al.,
2025). Similarly, the tundra zones in northern North Asia display
comparably low NPP characteristics. It is noteworthy that the vegetation
ecosystems in these areas are functionally simplistic and have limited
adaptability to extreme climatic events (Xue et al., 2020), leading not
only to low absolute NPP values but also to significant interannual
fluctuations and reduced ecosystem stability.

Trend analysis reveals significant regional differences in the NPP
change trends across Asia from 1981 to 2018. In southeastern East Asia
and South Asia, which are influenced by tropical and temperate mon-
soons, abundant annual precipitation, combined with the promoting
effects of global warming on vegetation growth, has led to notable in-
creases in NPP in southeastern China and the Indian Peninsula. Partic-
ularly noteworthy is the fact that NPP in most cultivated areas within
these regions has reached a highly significant level of growth. This is
likely attributable to continuous improvements in agricultural man-
agement and water-fertilizer conditions, which have not only boosted
crop yields but also significantly enhanced the productivity of farmland
ecosystems (Wei et al., 2024). The combined effects of advanced man-
agement practices and global warming have driven NPP increases in
these areas to highly significant levels. These findings further validate
Zeng Ning’s (Zeng et al., 2014) research on terrestrial carbon cycle
patterns, indicating that Asian farmland ecosystems, particularly in
China, have become important carbon sinks in recent years.

However, global warming is often accompanied by increased
evapotranspiration. In regions lacking sufficient precipitation, ecosys-
tems may become more vulnerable due to drought. In the grassland
areas of eastern Mongolia and northeastern Inner Mongolia, China,
vegetation productivity has declined significantly due to intensified
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Fig. 9. Hurst exponent analysis results of NPP in Asian terrestrial ecosystems.

drought caused by global climate change, together with human activ-
ities including intensive grazing and mining practices. The most pro-
nounced decline in NPP is observed in the Malay Archipelago of
Southeast Asia. Despite abundant rainfall, further increases in global
temperatures no longer promote vegetation growth in this tropical re-
gion. Since the beginning of the 21st century, large-scale deforestation
has been carried out across the islands to expand palm oil plantations
and timber industries (Huang et al., 2023), causing a dramatic reduction
in vegetation cover and a significant drop in carbon sequestration ca-
pacity. Additionally, forest fires have become a major contributor to the
reduction in vegetation cover in this region. For example, the 1983
forest fires in Kalimantan and the 1997 Indonesian forest fires destroyed
thousands of hectares of tropical rainforest (Hansen et al., 2019). These
frequent natural disasters have further exacerbated the declining trend
in NPP in the local tropical rainforests.

5.2. NPP sustainability characteristics in asia

Spatiotemporal analysis based on the Hurst exponent reveals marked
regional heterogeneity in the sustainability of Asian vegetation NPP.
Contrasting persistence patterns emerge between the Thar Desert pe-
riphery in South Asia and localized sectors of Kalimantan Island in
Southeast Asia, exhibiting persistent enhancement and degradation
respectively. Specifically, intensive irrigation networks in the western
Indus Plain sustain stable agroecosystems (Hasan and Fatima, 2025),
while the eastern region demonstrates climate buffering capacity
through the water-retention properties of black cotton soils (Tagore
et al., 2014) combined with drought-tolerant vegetation adaptations.
Conversely, extensive oil palm conversion replacing primary forests in
Kalimantan (Botterill-James et al., 2024) has precipitated biodiversity
loss and NPP persistence decline, given oil palm’s inferior productivity

10

compared to native rainforests, highlighting the ecological conse-
quences of monoculture land-use systems.

Projected trend analyses reveal that approximately half of Asia’s
vegetated areas, primarily distributed across northeastern East Asia and
northern Asia, exhibit stochastic variability in NPP. The stochastic
variability is primarily attributed to intensified interannual fluctuations
in summer monsoon precipitation in northeastern East Asia, which drive
frequent switches between water-surplus and drought conditions. This
leads to alternating resource constraints on vegetation growth (e.g.,
enhanced growth during wet years followed by carbon loss during
subsequent hot-dry years), thereby inhibiting long-term trend formation
(Guo et al., 2022). In northern Asia, the positive effect of climate
warming-induced growing season extension is offset by negative im-
pacts from permafrost thaw, including soil water loss and land subsi-
dence, resulting in an alternating pattern of vegetation productivity
responses.

Notably, regions including the Malay Archipelago, eastern Mongolia,
and the Irrawaddy River Basin may exhibit improving NPP trends. This
improvement primarily stems from integrated measures such as sus-
tainable forestry management (Liu et al., 2024b), farmland-to-forest
conversion programs (Chen et al., 2023b), and rare tree species con-
servation policies (Kyaw et al., 2024). Through vegetation community
reconstruction and ecosystem function restoration, these measures have
effectively reversed previous NPP declines caused by human activities
like agricultural expansion. These spatiotemporal patterns reveal the
dual role of human intervention: intensive development triggers
ecological degradation, while scientific governance can drive system
recovery. The findings validate a regional-scale '"stress-response-r-
ecovery" coupled human-environment dynamic process, providing a
replicable model for ecological restoration in developing countries.
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Fig. 10. Future sustainability analysis results of NPP in Asian terrestrial ecosystems.
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5.3. Drivers of NPP change in asia

Climate factors, such as temperature and precipitation, are generally
recognized as the dominant determinants of vegetation NPP (Chen et al.,
2013). The analysis based on the SEM in this study also confirms that
climatic factors play a predominant role among all driving factors, with
an impact coefficient of 0.38, reaching a highly significant level. Among

Significant at the 99 % level; ** 95 %; * 90 %. The indirect effect of topography on
graphy on NPP through climate is: 0.04x0.38=0.0152;The total effect of topography

these factors, mean temperature exhibits the highest impact coefficient,
followed by minimum temperature, maximum temperature, and
precipitation.

Temperature is a critical factor controlling plant growing seasons,
photosynthetic rates, and ecosystem productivity (Liu et al., 2024a).
Given the significant climatic diversity across Asia, the influence of
temperature on vegetation growth is particularly pronounced. In

11



M. Lietal

temperate and subarctic regions, temperature often limits the growing
season and growth rates of plants. Therefore, temperature variations,
especially winter minimum temperatures and summer maximum tem-
peratures, can become key limiting factors for vegetation NPP. Notably,
the impact coefficient of mean temperature is the highest among all
climatic factors, suggesting that vegetation productivity in Asia may be
significantly affected by global warming, particularly in high-latitude
and mountainous regions.

Precipitation directly affects water availability for vegetation,
thereby influencing photosynthesis and plant growth, and is undoubt-
edly another key driver of vegetation NPP (Zhu et al., 2022). In arid and
semi-arid regions such as Central Asia, Western Asia, and northwestern
East Asia, scarce precipitation makes it difficult to sustain vegetation
growth, resulting in vast desert and barren areas. However, this research
emphasizes the effect of climatic factors on vegetation NPP and does not
include these non-vegetated desert regions. In vegetated areas, the in-
fluence of temperature on NPP is greater than that of precipitation, as
evidenced by the distinct latitudinal zonation observed in the distribu-
tion of Asian vegetation NPP (Fig. 6). In vegetated regions, the precip-
itation distribution pattern in Asia is highly complex, with monsoon
climates and arid zone precipitation variations exerting different effects
on NPP across vegetation types. In humid regions such as tropical
rainforests and subtropical monsoon climates, precipitation is generally
not a limiting condition, whereas in moisture-deficient or semi-arid
areas, insufficient precipitation can significantly constrain vegetation
growth and NPP generation (Fensholt et al., 2012).

Topographic elements influence vegetation NPP through both direct
and indirect pathways. The direct impact coefficient of topography on
vegetation NPP is —0.14, with elevation and slope making significant
contributions. Typically, high-altitude regions are characterized by
scarce precipitation, lower temperatures, thin soil layers, and poor soil
fertility, all of which collectively limit vegetation growth (Feng et al.,
2025). Additionally, increased slope gradients exacerbate soil erosion,
further reducing soil fertility and restricting vegetation growth, leading
to decreased NPP (Qiu et al., 2025). Asia, the highest-elevation conti-
nent after Antarctica, has mountains, plateaus, and hills covering
approximately two-thirds of its land area, with about one-third of the
region exceeding 1000 m in elevation. Consequently, elevation and
slope significantly negatively impact Asian NPP (Chen et al., 2023a).
However, elevation and slope also generate indirect effects by influ-
encing human activities. For instance, in low-altitude and flat areas,
higher population densities and frequent human activities result in
greater disturbances to vegetation NPP, whereas in high-altitude and
steep-slope regions, lower population densities and reduced human ac-
tivities lead to fewer disturbances (Liu et al., 2015). Thus, this study
reveals that topography partially offsets its negative impact on NPP by
reducing human activities. This highlights the limitations of traditional
correlation analysis in comprehensively assessing the influence of
topography on NPP, while the SEM model more accurately uncovers the
complex relationships among factors, providing more precise evaluation
results.

Human activities exhibit dual effects on vegetation NPP (Dai et al.,
2023). On one hand, excessive land use, deforestation, overgrazing, and
urbanization can destroy natural vegetation and reduce NPP. On the
other hand, human activities such as agricultural cultivation and
ecological engineering projects can also promote vegetation NPP (He
et al., 2021). This study indicates that, among various factors, human
activities have a relatively minor contribution to Asian vegetation NPP,
with an impact coefficient of only 0.06. GDP contributes the most, fol-
lowed by population, primary industry, and secondary industry, all
showing positive correlations. This suggests that, although some regions
in Asia (e.g., the Malay Archipelago in Southeast Asia) face destructive
activities such as deforestation, overgrazing, and urbanization, human
activities overall tend to have a positive impact on NPP. Countries across
Asia, including China, have effectively enhanced vegetation coverage
and productivity through improved agricultural management,
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sustainable development policies, and ecological projects (e.g., refor-
estation, wetland restoration, and shelterbelt construction) (Li et al.,
2025). This finding aligns with the conclusions of Section 4.3.2
regarding the trend analysis of Asian vegetation NPP, which shows a
highly significant upward trend in NPP in most cultivated areas of East
Asia, Southeast Asia, and South Asia. This further demonstrates that,
despite the persistence of some destructive human activities in Asia,
effective policy interventions and ecological restoration efforts have
driven a positive trend in anthropogenic influences on NPP.

Although this study quantified the spatial differentiation mecha-
nisms of NPP driven by the synergistic effects of multiple factors using
SEM, the current model primarily elucidates driving relationships in the
spatial dimension, without incorporating time series information or
potential lag effects. This design choice leverages SEM’s strength in
testing predefined causal pathways rather than capturing temporal de-
pendencies (Grace et al., 2016). Moreover, the study period encom-
passes the 28-year principal cycle of Asian NPP (Section 4.1), capturing
its long-term dynamic characteristics. Nevertheless, we recognize that
vegetation productivity may exhibit short-term memory effects, such as
the lasting impacts of drought stress. Future research will integrate both
spatial and temporal information to more comprehensively reveal the
spatiotemporal regulatory mechanisms of carbon sink functions in Asian
ecosystems.

6. Conclusions

Employing long-term NPP datasets, this study analyzes the spatio-
temporal variations and driving mechanisms of NPP in Asian vegetation
from 1981 to 2018, yielding the following key conclusions:

(1) Throughout the research period, Asian vegetation NPP exhibits a
fluctuating increasing trend, accompanied by consistent seasonal
variation patterns. A mutation point is identified around 1998 in
the interannual variation. Wavelet analysis reveals that Asian
NPP demonstrates an approximately 20-year periodic fluctuation
at a 28-year time scale, undergoing two distinct rise-and-fall
transitions.

(2) Spatial analysis indicates that Asian terrestrial ecosystems display

a spatial pattern of lower NPP in the northwest and higher NPP in

the southeast. High NPP values are primarily observed in

Southeast Asia, southeastern East Asia, and South Asia, with these

regions exhibiting strong stability. In contrast, Central Asia,

Western Asia, and northwestern East Asia generally show lower

NPP values with greater variability.

Trend and sustainability analyses reveal significant regional dif-

ferences in NPP changes across Asia. Around 60 % of regions

show no significant change, while eastern East Asia and South

Asia exhibit NPP growth due to global warming, agricultural

development, and ecological projects. In contrast, tropical rain-

forests in Southeast Asia and grasslands in eastern Mongolia
experience declines due to natural disasters, deforestation, and
overgrazing. Future projections suggest potential NPP declines in

South Asia and southeastern East Asia’s agricultural areas from

long-term intensification, while regions like the Malay Archi-

pelago, eastern Mongolia, northeastern Inner Mongolia, and the

Irrawaddy River Basin may see positive shifts due to effective

policies and restoration projects.

SEM identifies natural factors as the dominant drivers of Asian

NPP changes, with climatic factors—particularly temperature

and precipitation—being the key contributors, exhibiting an

impact coefficient of 0.38. The total influence coefficient of

topographic factors on NPP is determined to be -0.10,

comprising a direct effect of —0.14 and an indirect effect of 0.04

mediated through climate and human activities. This indirect

effect is found to partially mitigate the negative impact of
topography on NPP. Human activities have a relatively minor
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influence on NPP, with contribution coefficients of 0.06, pri-
marily driven by GDP and population density.
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